2002

Analytically Continued Hypergeometric Expression of the Incomplete Beta Function

Jack C. Straton
Portland State University, straton@pdx.edu

Citation Details
http://pdxscholar.library.pdx.edu/phy_fac/248
Analytically Continued Hypergeometric Expression of the Incomplete Beta Function

Jack C. Straton

Abstract

The Incomplete Beta Function is rewritten as a Hypergeometric Function that is the analytic continuation of the conventional form, a generalization of the finite series, which simplifies the Stieltjes transform of powers of a monomial divided by powers of a binomial.

1991 Mathematics Subject Classification: 33B20, 33C05, 44A15

Key Words: Incomplete beta function, hypergeometric function, Stieltjes transforms, definite integrals

The finite hypergeometric series expression for the Incomplete Beta Function, [1]

\[\binom{-n}{1}F1(-n,1;c;z) = (1-c)z^{1-c}(z-1)^{n+c-1}B_{1,1}(1-c,n,n+1), \]

may be generalized to

Theorem

\[2F1(-\nu,1;\gamma;z) = (1-\gamma)z^{1-\gamma}(z-1)^{\nu+\gamma-1} \left[B_{1,1}(1-\gamma-\nu,\nu+1) \
ight. \
- B(1-\gamma-\nu,\nu+1) \left(1 - \frac{(-1)^{-\nu}\sin[\pi(\gamma+\nu)]}{\sin(\pi\gamma)} \right) \]. \]

The Incomplete Beta Function [2] is conventionally defined [3] with real parameters for statistical problems,

\[B_x(p,q) = \int_0^x t^{p-1}(1-t)^{q-1} \, dt \quad (0 \leq x \leq 1, \quad p,q > 0), \]

but is a smooth function of \(p,q \) or \(x \) when any or all are taken off the real axis (though it diverges as \(x \) takes on large, real values). Its hypergeometric expression [4] is likewise well-behaved for complex parameters, so we rewrite this expression in its more general form

\[2F1(\alpha,\beta;\beta+1;w) = \beta w^{-\beta}B_{w}(\beta,1-\alpha) = \beta w^{-\beta}B(\beta,1-\alpha)(1 - I_{1-w}(1-\alpha,\beta)) \]
\[= \beta w^{-\beta} [B(1-\alpha,\beta) - B_{1-w}(1-\alpha,\beta)]. \]

One may analytically continue the left-hand side to [5]

\[2F1(\alpha,\beta;\beta+1;w) = (-1)^{-\alpha}(w)^{-\alpha}\frac{\Gamma(\beta+1)\Gamma(\beta-\alpha)}{\Gamma(\beta)\Gamma(\beta+1-\alpha)}2F1(\alpha,\alpha-\beta;\alpha+1-\beta;1/w) \]
\[+ (-1)^{-\beta}(w)^{-\beta}\frac{\Gamma(\beta+1)\Gamma(\alpha-\beta)}{\Gamma(\alpha)\Gamma(1)}2F1(\beta,0;\beta+1-\alpha;1/w). \]

Then equating right-hand sides of (4) and (5) and transforming the nontrivial hypergeometric function again [6] gives
(B(1 - \alpha, \beta) - B_{1/w}(1 - \alpha, \beta)) = (-1)^{-\alpha}w^{-\alpha+\beta} \frac{1}{(\beta - \alpha)} \left(1 - \frac{1}{w}\right)^{1-\alpha} 2F_1(1 - \beta, 1; \alpha + 1 - \beta; 1/w) + (-1)^{-\beta}B(1 - \alpha, \beta) \frac{\Gamma[1 - (\alpha - \beta)]\Gamma(\alpha - \beta)}{\Gamma(1 - \alpha)\Gamma(\alpha)}, \quad (6)

Letting z = 1/w this simplifies [7] to

B_{1/z}(1 - \alpha, \beta) = z^{\alpha - \beta} \frac{1}{(\beta - \alpha)} (z - 1)^{1-\alpha} 2F_1(1 - \beta, 1; \alpha + 1 - \beta; z) + B(1 - \alpha, \beta) \left(1 + (-1)^{1-\beta} \frac{\sin[\pi\alpha]}{\sin[\pi(\alpha - \beta)]}\right), \quad (7)

Finally one substitutes \beta = \nu + 1 and \alpha = \gamma + \beta - 1 and rearranges sides to obtain Eq. (2).

In addition, if one substitutes \beta = 1 - \nu, \alpha = 2 - \mu, and \nu = \frac{\delta}{2} and analytically continues the Gauss function, [8] one may obtain a more useful form for the known [9] Stieltjes transform [10] of powers of a monomial divided by powers of a binomial,

Corollary

\[
\int_0^{\infty} \frac{x^{\nu-1}(\beta + x)^{1-\mu}}{\gamma + x} dx = 2 \int_0^{\infty} \frac{x^{\nu-1/2}(\beta + x^2)^{1-\mu}}{\gamma + x^2} dx = \pi \gamma^{-1}(\beta - \gamma)^{1-\mu} \csc(\nu\pi) I_{1-\frac{\nu}{2}}(\mu - 1, 1 - \nu) = \pi \gamma^{-1}(\beta - \gamma)^{1-\mu} \csc(\nu\pi) \left(1 + (-1)^{\nu} \frac{\sin[\pi(2 - \mu)]}{\sin[\pi(1 + \nu - \mu)]}\right) - \frac{\pi \csc(\nu\pi) \beta^{\nu+1-\mu}}{(\mu - 1 - \nu)(\beta - \gamma)B(\mu - 1, 1 - \nu)} \cdot 2F_1(2 - \mu, 1; 2 - \mu + \nu; \frac{\beta}{\beta - \gamma}), \quad (8)
\]

(|arg\gamma| < \pi, |arg\beta| < \pi, 0 < Re \nu < Re \mu) which is a finite series for integer \mu > 1.
