A Comparison of the Effects of Ordinary Prose and Left-hand Right-hand Practice Upon the Development of Keystroking Skills

Bonnie Sue Smith
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds
Let us know how access to this document benefits you.

Recommended Citation
https://doi.org/10.15760/etd.780

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
A COMPARISON OF THE EFFECTS OF ORDINARY PROSE
AND LEFT-HAND/RIGHT-HAND PRACTICE UPON
THE DEVELOPMENT OF KEYSTROKING SKILLS

by

BONNIE SUE SMITH

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF EDUCATION
in
COMMUNITY COLLEGE EDUCATION

Portland State University
The University of Oregon
Oregon State University
1983
TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH:

The members of the Committee approve the dissertation of

Bonnie Sue Smith presented July 22, 1983.

Loyde Hales, Chairman - PSU

Leonard Robertson - PSU

Carl Pollock - PSU

John Lind - PSU

Keith Acheson - UO

APPROVED

George Guy, Tri-University Program Coordinator (Portland State University)

Max Abbott, Tri-University Program Coordinator (University of Oregon)

Thomas Grigsby, Tri-University Program Coordinator (Oregon State University)

Don Leu, Dean of the School of Education (Portland State University)

Stanley Rauch, Dean of Graduate Studies and Research (Portland State University)

Title: A Comparison of the Effects of Ordinary Prose and Left-hand/Right-hand Practice Upon the Development of Keystroking Skills.

APPROVED BY MEMBERS OF THE DISSERTATION COMMITTEE:

Loyde Hales, Chairman
Leonard Robertson
Carl Pollock
John Lind
Keith Acheson

The problem of this study was to compare the effects of Prose practice, Left-hand/right-hand Equal practice, and Left-hand/right-hand Prescribed practice on the development of stroking skills of students enrolled in beginning typewriting classes. In addition,
the effects of the practices were examined for subjects with high and low initial straight-copy abilities.

The 260 subjects in the study represented 12 classes from three high schools in rural, southeastern Minnesota during first semester, 1982-1983.

Pretest and posttest measures of straight-copy, left-hand, and right-hand stroking skills were obtained by the administration of two different three-minute straight-copy, three different one-minute left-hand, and three different one-minute right-hand timed writings on each occasion.

Following the pretest, subjects within each class were randomly assigned to the three treatments. The practice sessions involved five minutes of practice per day for fifteen days. Subjects received individualized practice packets corresponding to their assigned treatments and were advised to type the materials at a rate that was slightly faster than comfortable.

Subjects in the Prose group practiced ordinary prose copy containing no special features or contrived words. Subjects in the Left-hand/right-hand Equal group practiced equal amounts of left-hand and right-hand lines. Subjects in the Prescribed group practiced a proportional number of left-hand and right-hand lines, depending on hand-weaknesses exhibited on the pretest.

The statistical hypothesis that on each of the six dependent variables of interest the means of the populations for the three treatment levels are equal was tested for the total sample and for the high and low group separately, using analysis of covariance.
Respective pretest measures of the dependent variable criteria were used as covariates.

In testing the six statistical hypotheses for the total sample, four were rejected at the .05 level of confidence: straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy. Four statistical hypotheses were rejected for the high speed level group: straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy. Three statistical hypotheses were rejected for the low speed level group: left-hand speed, right-hand speed, and right-hand accuracy. Following rejection for the main effects of practice, the statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test.

The findings of the study support the following conclusions: 1) practice using prose copy is more effective than practice using equal amounts of left-hand/right-hand copy in the development of straight-copy speed for students with initial straight-copy ability of 21.0 gwpm or higher, 2) left-hand/right-hand practice in equal or prescribed amounts is more effective than prose practice in the development of left-hand speed, 3) left-hand/right-hand practice in equal or prescribed amounts is more effective than prose practice in the development of right-hand speed, 4) left-hand/right-hand practice in prescribed amounts results in more errors per minute on right-hand copy than does practice using prose copy, and 5) significantly improving one-handed keystroking skill does not improve straight-copy stroking skill.
ACKNOWLEDGEMENTS

I express my sincere gratitude to my doctoral advisor, Dr. Loyde Hales, for his assistance and guidance in the preparation of my dissertation and for his continued support throughout my doctoral program.

I thank my colleagues at Winona State University for the assistance I received in completing the dissertation: Mr. Bob Collins and Mr. Dave Forsythe, Computer Services; Dr. Dennis Tanner, Dean of Business and Industry; and the work-study students in the Business Education and Office Administration Department. A special thank you to department secretary, Mrs. Shirley Flikki, for her invaluable assistance in conducting the study and for typing the dissertation.

I am deeply grateful to the five teachers and their students who participated in the research.

My appreciation goes to my children for their support and in particular to my daughter Montrew for her countless hours of help and for her patience.

A very special thank you to Dr. Leonard Robertson, Portland State University Business Education Department, for his direction and encouragement throughout my educational career.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- Need for the Study ... 1
- Purpose of the Study .. 2
- Statement of the Problem 3
- Delimitations .. 3
- Limitations ... 4
- Definition of Terms ... 4
 - Straight-copy Typewriting Speed (gwpm)
 - Accuracy (epm)
 - Ordinary Prose Copy (PROSE)
 - Right-hand Copy
 - Left-hand Copy
 - Prescribed Practice

- Summary ... 5
- Organization of Study .. 6

II LITERATURE REVIEW

- Implications of Right-hand/Left-hand Differences 7
 - Differences in Workload of Left Hand and Right Hand
CHAPTER

Effects of Hand Weakness on Speed and Accuracy
Instructional Methodology

Experimental Studies .. 13
Summary .. 16

III METHODS AND PROCEDURES 17

Selection of the Sample 17
Research Design .. 20
Description of the Treatments 22

Level 1--Prose
Level 2--Left-hand/Right-hand Equal
Level 3--Left-hand/Right-hand Prescribed

Duration of Treatments 28
Conducting the Practice 29
Testing .. 31
Treatment of the Data 32

IV FINDINGS .. 35

Description of the Groups 35
Straight-copy Pretest and Posttest Results 37

Straight-copy Speed
Straight-copy Accuracy

Left-hand Pretest and Posttest Results 40

Left-hand Speed
Left-hand Accuracy

Right-hand Pretest and Posttest Results 43

Right-hand Speed
Right-hand Accuracy
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Distribution of Subjects by School, Teacher and Class</td>
<td>19</td>
</tr>
<tr>
<td>II Scale for Prescription Based on Left-hand/Right-hand Pretest Speed Differences</td>
<td>25</td>
</tr>
<tr>
<td>III Scale for Modification of Prescription Based on Speed Due to Pretest Accuracy Differences</td>
<td>26</td>
</tr>
<tr>
<td>IV Frequencies of Prescriptions in the Prescribed Group</td>
<td>27</td>
</tr>
<tr>
<td>V Timetable for the Study</td>
<td>29</td>
</tr>
<tr>
<td>VI Retention Percentages by Practice Group and High School</td>
<td>36</td>
</tr>
<tr>
<td>VII Distribution of Subjects by Practice Group and Speed Level Group</td>
<td>37</td>
</tr>
<tr>
<td>VIII Measures of Central Tendency and Dispersion of Pretest and Posttest Straight-copy Speed Raw Scores (Gwpm)</td>
<td>38</td>
</tr>
<tr>
<td>IX Measures of Central Tendency and Dispersion of Pretest and Posttest Straight-copy Accuracy Raw Scores (Epm)</td>
<td>40</td>
</tr>
<tr>
<td>X Measures of Central Tendency and Dispersion of Pretest and Posttest Left-hand Speed Raw Scores (Gwpm)</td>
<td>41</td>
</tr>
<tr>
<td>XI Measures of Central Tendency and Dispersion of Pretest and Posttest Left-hand Accuracy Raw Scores (Epm)</td>
<td>43</td>
</tr>
<tr>
<td>XII Measures of Central Tendency and Dispersion of Pretest and Posttest Right-hand Speed Raw Scores (Gwpm)</td>
<td>44</td>
</tr>
<tr>
<td>XIII Measures of Central Tendency and Dispersion of Pretest and Posttest Right-hand Accuracy Raw Scores (Epm)</td>
<td>46</td>
</tr>
<tr>
<td>XIV Straight-copy Speed: Analysis of Covariance and Adjusted Group Means for the Total Sample</td>
<td>48</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>XV</td>
<td>50</td>
</tr>
<tr>
<td>XVI</td>
<td>51</td>
</tr>
<tr>
<td>XVII</td>
<td>53</td>
</tr>
<tr>
<td>XVIII</td>
<td>54</td>
</tr>
<tr>
<td>XIX</td>
<td>56</td>
</tr>
<tr>
<td>XX</td>
<td>59</td>
</tr>
<tr>
<td>XXI</td>
<td>60</td>
</tr>
<tr>
<td>XXII</td>
<td>62</td>
</tr>
<tr>
<td>XXIII</td>
<td>63</td>
</tr>
<tr>
<td>XXIV</td>
<td>65</td>
</tr>
<tr>
<td>XXV</td>
<td>66</td>
</tr>
<tr>
<td>XXVI</td>
<td>68</td>
</tr>
<tr>
<td>XXVII</td>
<td>71</td>
</tr>
<tr>
<td>XXVIII</td>
<td>72</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>XXIX Straight-copy Accuracy: Analysis of Covariance and Adjusted Group Means for the Low Initial Speed Level Classification</td>
<td>73</td>
</tr>
<tr>
<td>XXX Left-hand Speed: Analysis of Covariance and Adjusted Group means for the Low Initial Speed Level Classification</td>
<td>74</td>
</tr>
<tr>
<td>XXXI Left-hand Accuracy: Analysis of Covariance and Adjusted Group Means for the Low Initial Speed Level Classification</td>
<td>76</td>
</tr>
<tr>
<td>XXXII Right-hand Speed: Analysis of Covariance and Adjusted Group Means for the Low Initial Speed Level Classification</td>
<td>77</td>
</tr>
<tr>
<td>XXXIII Right-hand Accuracy: Analysis of Covariance and Adjusted Group Means for the Low Initial Speed Level Classification</td>
<td>79</td>
</tr>
<tr>
<td>XXXIV Summary of Hypothesis Testing--Low Speed Level</td>
<td>82</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Considerable disagreement exists among typewriting teachers as to the benefit of specialized typewriting drills in the development of keystroking skills. One such specialized drill, the left-hand/right-hand drill, has been the subject of controversy among classroom teachers and typewriting "experts" alike.

Nothing by way of specialized content, vocabulary, letter sequences or anything else has ever been found to have the slightest positive effects on stroking skills—in contrast to ordinary prose. . . . Transfer of gains to "all copy" requires practice at "all copy" (i.e., at the largest possible variety of letter sequences—the chances of variety being maximized in ordinary prose over a wide vocabulary). (West, 1974, p. 12)

Analysis of the words used in the practice materials . . . shows that it is possible to give realistic emphasis to high-frequency words, the "handedness" factor of words, and the finger facility or variable stroking patterns required to type words with different components. This can be done and still accommodate the need to encounter in meaningful context the various word components that are considered essential to the development of optimum skill for all students in the limited time available for practice. . . . At least three years would be required for typewriting students on typical practice schedules to encounter all keystroking combinations even once if nonrepetitive, unstructured materials were used to develop typewriting skill. . . . The random or accidental occurrence of these essential learning components, left to chance by practice on "normal" prose, can result at best in only minimal initial exposure and cyclical reinforcement and at worst in uneconomical use of the student's time—the greatest waste in all of education. (Robinson & Lessenberry, 1977, pp. 40-41)

The value of special drills was of particular interest to the researcher since specialized, one-hand drills are included in various
community college typewriting programs, as well as typewriting programs at other educational levels. There was a need to provide data related to the question, "Are such drills superior to practice on ordinary prose?"

Need for the Study

As an indication of the importance of typewriting instruction in postsecondary education, it is estimated that the annual enrollment in typing classes is between 600,000 and 700,000 students. (West, 1983, pp. 5-6) For community colleges, typing instruction is particularly important since a preponderance of these institutions have secretarial programs which provide typing instruction to majors and nonmajors, the latter taking such courses for vocational and/or personal reasons. Therefore, the identification of appropriate methods of typewriting instruction is important to curricular development and effective instruction.

Information regarding the effectiveness of typewriting drills, a major component of typing instruction, is necessary in order to provide an efficient skillbuilding program. Optimum utilization of classroom time demands that drills be selected on the basis of proven benefit to the development of stroking skills. This information is best provided through experimental research.

Purpose of the Study

The purpose of this study was to provide experimentally obtained evidence regarding the effects on keystroking skills of practicing
on-hand drills as compared to practicing ordinary prose. The results of the study provide information which may be used by community college educators, methods instructors, textbook authors, and typewriting instructors at other educational levels to evaluate the typewriting practice drills included in their programs and materials.

Statement of the Problem

The problem of this study was to compare the effects of skillbuilding practice using ordinary prose copy and skillbuilding practice using left-hand/right-hand copy on the development of keystroking skills of students enrolled in beginning typewriting.

The effects of the practice materials were compared on the bases of the dependent variable criteria: 1) straight-copy stroking speed, 2) straight-copy stroking accuracy, 3) left-hand stroking speed, 4) left-hand stroking accuracy, 5) right-hand stroking speed, and 6) right-hand stroking accuracy.

Although six dependent variable criteria were included, the primary focus of this study was on straight-copy stroking speed and accuracy. Left-hand and right-hand speed and accuracy were of secondary consideration and were included in order to explore the total impact of the practice methods.

Delimitations

There was no attempt to relate the effects of the practice to anything other than straight-copy, left-hand, and right-hand speed and
accuracy. Consequently, the following factors were excluded: 1) effects of the practice upon production typewriting proficiency, and 2) effects of the practice on the frequency of various types of errors.

In addition, no other type of practice material was studied. The prose and left-hand/right-hand practice was not conducted under rate-forcing conditions. The data were not analyzed by such factors as sex, age, nationality, or year in school. No attempt was made to assess differences in attitudes toward the two types of practice.

Limitations

Subjects in the study were enrolled in regular typewriting courses requiring various typewriting activities using ordinary prose. Therefore, it was not possible to limit the left-hand/right-hand groups to left-hand/right-hand practice only. However, this situation is consistent with the recommended and actual utilization of this drill in typewriting instruction.

Although an attempt was made to ensure purposeful practice and adherence to the rules of practice, it is possible that this was not accomplished for every subject at each practice session.

Definition of Terms

Straight-copy Typewriting

Word-for-word copying of printed or typed prose material without erasing and without requiring format decisions by the typist.
Speed (gwpm)

Average gross words per minute of the timed writings. Gross words per minute is obtained by dividing the total number of typing strokes by five and dividing this number by the number of minutes the student typed.

Accuracy (epm)

Errors per minute represents the sum of the errors made on the timed writings divided by the number of minutes the student typed.

Ordinary Prose Copy (Prose)

Copy with no special features or contrived combination of words.

Right-hand Copy

Copy containing only right-hand words.

Left-hand Copy

Copy containing only left-hand words.

Prescribed Practice

Left-hand/right-hand practice in which the student types a proportionate number of left-hand and right-hand lines depending on diagnosis of left-hand and right-hand abilities.

Summary

Skillbuilding drills are a major component of many typewriting courses. A considerable amount of student time is devoted to practicing various specialized drills in an effort to improve straight-copy speed and accuracy.
There are many specialized drills available, some of which are highly recommended by typewriting textbook authors and classroom teachers. However, some authors and teachers believe specialized drills are useless and that the best way to improve straight-copy skill is to practice using ordinary prose copy. Experimental study is necessary to provide information concerning the effectiveness of various drills.

This study examined one such specialized drill, the left-hand/right-hand drill, and compared it with practice on ordinary prose.

Organization of the Study

Chapter I presented an introduction to the study, including the need for the study, purpose of the study, statement of the problem, delimitations and limitations, and a definition of terms. Chapter II presents a review of related literature. Chapter III presents the methods and procedures used in the study. Chapter IV details the findings provided by the study. Chapter V presents a summary of the study, conclusions, implications, and recommendations for further study.
CHAPTER II

LITERATURE REVIEW

The literature regarding left-hand/right-hand practice and ordinary prose practice is lacking in experimental studies which compare the two types of practice. However, there are various articles which discuss the weakness of the right hand and those which support or deny the necessity of including left-hand/right-hand practice in the skillbuilding program.

Implications of Right-hand/Left-hand Differences

The differences between the workload of the right hand and left hand in typewriting, the relation of hand used and typewriting speed and accuracy, and the implications of these differences to instruction are considered in this section.

Differences in Workload of Left Hand and Right Hand

"The standard typewriter keyboard is a haphazard imposition, wretchedly unbalanced, and absurdly awkward in vital reaches," according to Dvorak, Merrick, Dealey, and Ford (1936, p. xii). The disproportionate loads of the fingers in typing were recognized by Dvorak et al. in arriving at the conclusion: "Here is a left-handed typewriter in a right-handed world!" (p. 212).

In 1922, Hoke (cited in Dvorak et al., 1936) counted the number
of keystrokes for each letter in the copy, determined the loads
carried by each typing finger, and compared the typing loads of the
left-hand and right-hand fingers. He found that the left little
finger does nearly three times the work of the right little finger,
the left second finger has a 53 percent excessive overload, and the
left first finger has a 49 percent excessive overload. Hoke
determined that the weaker left hand makes 131 strokes to every 100 by
the right hand and concluded that there is a 47 percent typing
overload upon the left hand on the conventional typewriting keyboard.
Reimer's (cited in Dvorak et al., 1936) estimate was somewhat higher:
the left hand makes 144 strokes to every 100 by the right hand.

While listening to a fast typist, Dvorak et al. (1936) detected
a break in pace whenever the copy contained words typed with one hand.
Consequently, they did a study of letter frequency in the 1,000 most
common English words and found that words typed with one hand were
heavily loaded in the left hand.

Effects of Hand Weakness on Speed and Accuracy

Beaumont (1969) used a sample of 600 high school students at
three levels of skill development and discovered that typing speeds
decreased significantly as the percent of one-hand and near one-hand
words in the copy was increased beyond 33 percent. Such information
as this has probably supported the opinion that specialized practice
on one-hand words is necessary.

Javed (1975) found predominantly left- and right-hand materials
to be a significant factor in the achievement of speed and accuracy.
He concluded that left-hand material is easier to type than right-hand material, which may be because of the greater incidence of left-hand words in the language. This has led to the conclusion by some that the right hand needs remedial practice. (Winger, 1965)

Instructional Methodology

The classroom use of specialized drills to improve typewriting skill developed from the typewriting contests of the early 1900's. Winners of these contests developed various books of drills stressing repeated practice of specific skill components. These structured materials were adapted to classroom textbooks. (Robinson, Erickson, Crawford, Beaumont, & Ownby, 1979)

According to Robinson et al. (1979):

It is not surprising, then, that from such a beginning there developed a debate among teachers as to which kinds of materials would develop the best speed: paragraph material incorporating a wide open vocabulary? or specialized drills made up of a judicious selection of words that incorporated keystroking sequences thought to encourage high speed and those comprised of a different selection of words containing speed type combinations thought to require special intensive practice to be executed fluently? These questions have not been satisfactorily answered even today. (p. 64)

Winger (1965) acknowledged the situation of a left-handed typewriter in a right-handed world. He stated:

Dvorak, in particular, and others too, have made good points to the effect that our present keyboard is responsible for many of the error patterns that develop. It behooves the typing teacher, then, to make an honest effort to do the best job possible in detecting and correcting these keyboard deficiencies. As an example, we know that the left hand and its individual fingers carry far more of the typing load than the right hand and we need to be sure that a good remedial program is developed (through warmups and drills) to correct deficiencies. (p. 84)

Winger (1974) reported on a one-hand proficiency program that
had been in effect at Oregon State University for many years. One-minute pretests were administered on alternate-hand words, left-hand words, and right-hand words. The one-hand timings were then repeated to permit selection of the more accurate of the two. A goal for each student was set for each hand by adding eight to ten words to the slowest hand. Students were required to practice more words with the weaker hand (right hand) in order to bring the speed of the weaker hand up to the level of the stronger hand. "This is where the present keyboard points up the right-hand weaknesses, because the left hand is usually much faster" (p. 7), Winger stated. After a practice time of two and one-half to three weeks, students repeated the pretest as a posttest. Two or three weeks after the posttest, the same timings were given again.

Winger (1974) indicated the success of the drill by showing the percent of increase in speed and percent of error reduction for the weaker hand. However, his "action" research did not indicate any transfer effects to prose copy and did not include a control group.

Winger (Note 1) stressed the need for right-hand remedial practice, "Although classes are different, right-hand speeds will normally be 5-10 words per minute slower." He pointed to the need for students to practice more right-hand words in order to build right-hand speed to the level of left-hand speed, which would therefore improve straight-copy skill. Winger (Note 1) stated, "If you don't do something about left-hand/right-hand, you will deprive students of the most critical area of typewriting--bar none."

Hall (1981) recommended the use of Winger's pretest/practice/
posttest in the classroom and included left-hand/right-hand materials as a valuable component. Hall stated, "The typewriter keyboard favors the left hand. To overcome the left-handed typewriter, a three-week systematic skillbuilding program is suggested" (p. 4).

In discussing opening activities for the typing class, Hall (1982) again recommended the use of the left-hand/right-hand drill. Hall described the left-hand/right-hand practice as follows:

Since the 'qwerty' keyboard is not the most efficient keyboard that could have been developed, some time can be spent helping students compensate for this difficulty. The project takes two weeks. Students take a pretest on the first day to determine which hand is faster, and they chart their starting points. The next eight days are spent practicing a combination of right-hand/left-hand drills in proportion to the need indicated in the pretest. The tenth day is spent administering the posttest. (p. 10)

The importance of selective practice to correct difficulties arising from the typewriter keyboard was discussed by Holmes and Eide (1981). They stated:

Every student will benefit from practice time devoted to these additional activities: service key-drills, figure drills, left-hand/right-hand drills (which overcome the imbalance of the existing keyboard by strengthening the typist's weaker hand). (p. 14)

Based on a computer analysis of keystroking components of words used in written general and business communication, Robinson and Lessenberry (1977) maintain that structured, specialized drills assure systematic student practice on the keystroking components that make up the typewritten language. They stated that practice on ordinary prose copy leaves to chance the practice needed on essential components and therefore may result in a waste of student practice time. This rationale suggests that specialized one-hand drills would have benefit
in a typewriting skillbuilding program.

By analyzing errors to find what types of words had the highest overall error incidence, Robinson (1972a) determined that no copy of a single character can be identified as the best type of copy for improving keystroking accuracy. The study specifically sought to answer the question of whether differences in accuracy result from typing copy selections loaded with specific types of letter combinations including one-hand words.

Even though one of Robinson's (1972a) conclusions was that "no copy of a single character... can be identified as the 'best' kind of copy for inducing accurate keystroking," he still recommended the use of a variety of kinds of copy in developing basic skill competency, including contrived sentence copy.

West (1969) summarized his opposition to the use of contrived copy in the development of straight-copy stroking skills by stating:

The reason for the failure of contrived materials... to be beneficial lies in the concept that is fundamental to all of learning, one with which the reader should by now be familiar, transfer. (p. 239)

West (1969) explained the essence of transfer as follows:

Practice at some thing makes one better at that thing, not at other things. In the deepest sense, there is no such thing as speed in general, facility in general, rhythm in general. Instead, one develops those things on whatever particular words have been practiced. One might suspect such materials to be mere window dressing, perhaps created out of a need to feel that there is something complicated or recondite about the materials of practice. (p. 240)

In order to facilitate transfer, West (1969) insisted that materials for building straight-copy stroking speed must be ordinary prose. He stated:
If you want speed in general, you must practice on materials in general. So ignore the window dressing of drills using particular words, that is, words calling for particular kinds of movement sequences. Instead, apply speed practice to the broadest possible vocabulary of ordinary, unselected prose. (p. 251)

Regarding accuracy development, West (1969) listed as valueless materials such as "right-hand words, left-hand words, balanced-movement words, and the like" (p. 267). West (1974) stated that letter sequence drills "may be dismissed out of hand because such drills were found totally useless in dozens of earlier studies" (p. 14).

According to West (1983), stroking accuracy depends on typing at the right speed, that is, one a little below the rate at which too many errors are made. In a list of totally ineffective accuracy procedures, he included "all concoctions of specialized materials based on various kinds of motion sequences" (p. 131).

Erickson (1967) found that students improved their accuracy as they discovered their error thresholds (the rate at which they began to lose control and make an excessive number of errors--four or more per minute). Erickson's findings supported West's (1983) contention that accuracy depends upon typing at the right speed.

Experimental Studies

West (1969, pp. 266-267) made reference to early studies which demonstrated the uselessness of corrective procedures and materials. Griggs (cited in West, 1969) used drills of various kinds together with technique check sheets and error-analysis charts and did not find
this combination beneficial. Van Ordstrand (cited in West, 1969) obtained "no difference" results from the use of location drill sequences and lines of words emphasizing the use of a particular fingers. Sleeter (cited in West, 1969) was unable to demonstrate superior results when using error-analysis charts, teacher discussion of errors and their sources, and corrective drills based on individual errors.

West (1969) referred to the Holmes (cited in West, 1969) study as the "study to end all such studies" (p. 267). West reported that in the Holmes study, 98 causes of errors were specified and 76 corrective procedures and materials were employed, each supposedly relevant to some cause of error. The battery of corrective procedures and materials included every technique and type of material used in the history of typewriting. The techniques were applied during two, four-week periods toward the middle of the school year to beginners as well as those with one and two semesters of prior typing experience. Her findings were that there was no reduction in total errors nor in the frequencies for various types of errors. Although Holmes did not use a control group, West (1969) stated that the "flat failure to reduce errors or to change particular error frequencies is impressive enough" (p. 267).

Long (1977) compared the effectiveness of ordinary prose copy and contrived copy upon the development of copying skill. She pretested 141 beginning typewriting students after alphabetic keyboard presentation and divided the students into ability groups. From the preselected skill group, students were randomly assigned to prose or
contrived copy for skillbuilding under timed conditions. Long's findings indicated that either ordinary prose or contrived copy can be used efficiently for skillbuilding.

Prater (1976) compared the effects of "selective" skills, textbook drills, magazine typing, and no drills on straight-copy speed and accuracy using a sample of low-ability intermediate typewriting students in three different colleges. The "selective" drills were selected from Selective Practice Typing Drills (Lloyd, Poland, Rowe, Winger & Griffith, 1974). On straight-copy speed gain, Prater (1976) found a statistically significant difference between no drills and "selective drills" in favor of the no drills group. No significant differences were found among the groups on straight-copy accuracy gain.

Shannon and Robertson (Note 2) compared the effects of prose practice and left-hand/right-hand practice and found no significant differences in regard to posttest straight-copy speed or accuracy. However, students practicing left-hand/right-hand materials exhibited higher right-hand speeds than did students who practiced prose materials.

In the Shannon and Robertson study (Note 2), the sample consisted of 173 students enrolled in postsecondary typewriting courses. Students practiced either prose materials or left-hand/right-hand materials for 10 minutes per day, two days per week, for five consecutive weeks during the middle of the academic quarter. The left-hand/right-hand lines were practiced in equal amounts with no prescriptive element. Shannon and Robertson (Note 2) concluded
that "significantly improving one-handed keystroking skill does not significantly improve straight-copy skill" (p. 29).

Summary

As far back as 1922, when Hoke studied the typing loads of the fingers, typewriting researchers and theorists have been searching for the "solution" to developing speed and accuracy on the keyboard.

Present research data do not support either the group which advocates the use of ordinary prose or the group which advocates the use of contrived copy for the development of straight-copy keystroking ability. So far, the best evidence is that it does not make any difference, and to that extent, support may go to the ordinary prose group. Why spend innumerable hours contriving copy that does not "work" any better than newspaper copy?

Interestingly, even though researchers have been unable to identify value in using different kinds of specialized copy, some continue to advocate the use of contrived drill materials.
CHAPTER III

METHODS AND PROCEDURES

The study was designed to compare three levels of the independent variable, type of practice (Prose, Left-hand/right-hand Equal, Left-hand/right-hand Prescribed) on straight-copy, left-hand, and right-hand speed and accuracy. Subjects in each classroom were randomly assigned to the three treatment levels and the sample was divided on the basis of initial straight-copy speed into two speed levels (high—upper one-half of the subjects; low—lower one-half of the subjects). The dependent variable criteria were analyzed, using analysis of covariance.

The specific components of the study which are detailed in this section include the selection of the sample, research design, description of the treatments, duration of the treatments, practice conditions, testing procedures, and treatment of the data.

Selection of the Sample

It was important to the execution of this study that the subjects be beginning typing students in structured classes which require regular attendance. Since many beginning community college typewriting students have had previous typewriting instruction and are enrolled in community college courses which are not structured and do not require regular attendance, a high school sample was chosen. In
addition, the use of the high school sample permitted the comparison of these results to a previous study at the university level, thereby expanding the research base for generalization to introductory typewriting at various educational levels. The legitimacy of such a generalization is provided by West (1983) who, in discussing typewriting instruction, said that "there are no consequential differences in instructional practices at different school levels (p. 15)."

The sample consisted of 260 high school typewriting students from selected rural, southeastern Minnesota high schools. Twelve classes were involved in the study, representing three high schools and five teachers. High School A provided seven classes and three teachers. The total enrollment of High School A was 1,440 students (grades 10-12). High School A is found in a university town of 26,000 people; the economic base of the area served by the high school is agriculture, business, and employment related to the university. High School B provided two classes and one teacher; the school had an enrollment of 549 students (grades 9-12). It is located in a community of 1,400 people; the economic base is agriculture and agriculture-related business. High School C provided three classes and one teacher; it had an enrollment of 498 students (grades 7-12). High School C is located in a community of 2,200 people; the economic base of the area served by this school is agriculture and agriculture-related business.

Table I details the distribution of subjects by high school, teacher, and class.
TABLE I

DISTRIBUTION OF SUBJECTS BY SCHOOL, TEACHER, AND CLASS

<table>
<thead>
<tr>
<th>Teacher/Class</th>
<th>School A</th>
<th>School B</th>
<th>School C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 1</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 2</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 3</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 1</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 2</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 1</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Teacher 4:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 1</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Subjects in class 2</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Teacher 5:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects in class 1</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Subjects in class 2</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Subjects in class 3</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Total Classes</td>
<td></td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Total Subjects</td>
<td></td>
<td>260</td>
<td>172</td>
</tr>
</tbody>
</table>

Subjects were enrolled in beginning typewriting courses during the first semester of the 1982-83 school year. The sample consisted of 79 males and 181 females; there were 44 freshmen, 121 sophomores, 65 juniors, and 30 seniors.

Instruction for the beginning classes at High School A and High School B began August 30, 1982; classes began at High School C on
August 26, 1982. Students in all schools had progressed through alphabetic keyboard presentation. During the course of the study, students were involved in numeric keyboard presentation and pre-production instruction.

Research Design

An experimental design was used to assess the effects of the treatment variable on six dependent variables, using analysis of covariance. The treatment variable consisted of three levels (types of practice): 1) Prose, 2) Left-hand/right-hand Equal, and 3) Left-hand/right-hand Prescribed. Six dependent variable criteria were included in the study: 1) straight-copy speed, 2) straight-copy accuracy, 3) left-hand speed, 4) left-hand accuracy, 5) right-hand speed, and 6) right-hand accuracy.

Within each classroom, subjects were randomly assigned to the three treatment levels. A list of subjects pretested was compiled for each class and subjects were assigned to groups within each class by the use of a table of random numbers. Treatment levels were then randomly assigned to groups.

Respective initial measures of the dependent variable criteria were used as covariates to control for initial chance differences remaining after random selection, i.e., straight-copy pretest speed was utilized as the covariate in the analysis of the dependent variable, straight-copy speed, and right-hand pretest speed was used as the covariate in the analysis of the dependent variable, right-hand speed.
On the basis of the straight-copy pretest, subjects’ speed scores were placed in rank order and the sample divided into high (upper one-half) and low (lower one-half) straight-copy speed classifications in order to compare differences in the effects of the practice resulting from differences in initial straight-copy ability. This procedure resulted in a high group with pretest straight-copy scores of 21.0 gross words per minute (gwpm) and above and a low group with pretest straight-copy scores below 21.0 gwpm.

The use of pretest measures as covariates to control for initial chance differences precluded the use of the high/low classification as a second factor in a two-way factorial design. However, the effect of the practice on high and low speed groups was of secondary interest so the analysis of covariance was replicated for each initial straight-copy speed level.

A fixed-factor analysis of covariance was performed on each of six dependent variables in the overall model and for the model replicated for high and low initial speed level classifications. The Statistical Package for the Social Sciences (Nie, Hull, Jenkins, Steinbrenner, & Bent, 1975) was used in the analyses.

For each dependent variable, the following statistical hypothesis was tested: On the dependent variable of interest, the means of the populations for the Prose group, Left-hand/right-hand Equal group and Left-hand/right-hand Prescribed group are equal. The six hypotheses were tested for the total sample and for the high and low initial speed level classifications separately. Statistical significance at the .05 level of confidence was necessary to reject
the statistical hypotheses.

If the main effect for treatment was significant at the .05 level of confidence, the statistical hypothesis for each pair-wise mean comparison was tested at the .05 level, using Tukey's HSD (honestly significant difference) test (Wildt & Ahtola, 1978, pp. 29-41).

Description of the Treatments

The experiment included three levels of the treatment variable, type of practice. Subjects assigned to Level 1 practiced using ordinary prose copy; Level 2 subjects practiced equal amounts of left-hand and right-hand copy; Level 3 subjects practiced a prescribed amount of left-hand and right-hand copy depending on pretest right- and left-hand abilities.

Three types of practice materials corresponding to the three treatment levels were constructed by the researcher. The packets of practice materials included detailed instruction sheets and were duplicated using a different color of paper for each treatment.

Level 1--Prose

Level 1 of the treatment variable, ordinary prose, consisted of a practice packet of prose lines. Newspaper copy was used as a basis for constructing lines each of which contained 58-62 typewriting strokes. The copy contained no special features or combinations of letters or words. The six-page practice packets included five pages of practice lines (180 lines) and an instruction sheet specifying the
rules of practice. Material for the prose packet is located in Appendix A.

Level 2--Left-hand/Right-hand Equal

Level 2, Left-hand/right-hand Equal, consisted of a practice packet of lines composed of left-hand and right-hand words. The copy on each page was arranged with alternating lines of left-hand and right-hand words (a line of left-hand words followed by a line of right-hand words, etc.).

A portion of the words used for this packet were taken from Webster's New Collegiate Dictionary (1973) and others were created by the researcher because of the smaller percentage of right-hand words available in the language. The words were arranged to form lines each of which contained 58-62 typewriting strokes.

The six-page packet included five pages of practice lines (168 lines) and an instruction sheet. Copy for the Left-hand/right-hand Equal packet is located in Appendix B.

Level 3--Left-hand/Right-hand Prescribed

Level 3, Left-hand/right-hand Prescribed, consisted of a packet of lines composed of left-hand and right-hand words. The copy on each page was arranged with a proportionate number of left-hand and right-hand lines depending on each subject's prescribed practice.

Prescribed practice. Subjects in the prescribed group practiced a proportionate number of left-hand and right-hand lines. The purpose of the practice was to allow each subject to type more lines using the
weaker hand. The proportion of left-hand and right-hand lines to be practiced was prescribed by the researcher based on differences in pretest left-hand and right-hand speed and accuracy.

Determining the prescription. Left-hand and right-hand pretest speed and accuracy measures were obtained by the administration of three, one-minute timed writings for each hand. The three timings were averaged for each hand, yielding gross words per minute and errors per minute.

The following steps were followed in arriving at a prescription for each subject in Level 3:

1. Determine which hand was slower (weaker) and to what extent by calculating the difference between the pretest left-hand and right-hand speed scores.

2. Select a practice proportion of lines based on speed, using a scale. The scale used for prescription based on speed is located in Table II. The range of difference between left-hand and right-hand speeds is given in gross words per minute (Column 1). In Column 2, the number of lines to be practiced by the slower hand is the first number. If the left hand is slower by 1.33 to 3.00 gwpm, a 2-1 proportion of lines means practice two lines of left-hand words to one line of right-hand words.
TABLE II
SCALE FOR PRESCRIPTION BASED ON LEFT-HAND/RIGHT-HAND PRETEST SPEED DIFFERENCES

<table>
<thead>
<tr>
<th>Difference in speed (gwpm)</th>
<th>Proportion of lines</th>
<th>Prescription</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slower Hand</td>
<td>Faster Hand</td>
</tr>
<tr>
<td>0-1.32</td>
<td>1 line</td>
<td>1 line</td>
</tr>
<tr>
<td>1.33-3.32</td>
<td>2 lines</td>
<td>1 line</td>
</tr>
<tr>
<td>3.33-5.32</td>
<td>3 lines</td>
<td>1 line</td>
</tr>
<tr>
<td>5.33-7.32</td>
<td>4 lines</td>
<td>1 line</td>
</tr>
<tr>
<td>7.33-9.32</td>
<td>5 lines</td>
<td>1 line</td>
</tr>
</tbody>
</table>

3. Evaluate/modify the prescription based on speed (Step 2), using an accuracy scale. In this scale, the difference between left-hand and right-hand accuracy is given in errors per minute (epm). The proportion of lines based on speed (from Step 2) will be increased or decreased from zero to three categories depending on the degree of differences in accuracy between the hands. Table III shows the number of category increases or decreases based on amount of accuracy difference.
TABLE III
SCALE FOR MODIFICATION OF PRESCRIPTION BASED ON SPEED DUE TO PRETEST ACCURACY DIFFERENCES

<table>
<thead>
<tr>
<th>Differences in Accuracy (epm)</th>
<th>Category Change</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2.00</td>
<td>0</td>
<td>No change in speed prescription</td>
</tr>
<tr>
<td>2.01-4.00</td>
<td>1</td>
<td>Increase/decrease by 1 category</td>
</tr>
<tr>
<td>4.01-6.00</td>
<td>2</td>
<td>Increase/decrease by 2 categories</td>
</tr>
<tr>
<td>Above 6.01</td>
<td>3</td>
<td>Increase/decrease by 3 categories</td>
</tr>
</tbody>
</table>

The following example illustrates the use of the accuracy modification scale in Table III. Due to the unreliable nature of error measures in contrast to speed measures, sufficiently large differences in accuracy were necessary to indicate a modification of the prescription based on speed.

Example. The subject typed 28.00 gwpm with the left hand and 23.00 gwpm with the right hand. The difference of 5.0 gwpm yields a prescription based on speed of 3-1 (Step 2, Table II): three lines of right to one line of left since the right hand was slower.

If errors per minute were 8.00 with the left hand and 4.00 with the right hand, the 4.00 epm difference would necessitate a one category change in favor of the right hand (decrease right-hand lines), making the accuracy modified prescription 2-1: two lines of right to one line of left. If errors per minute were 8.00 right hand and 4.00 left hand, the 4.00 epm difference would necessitate a one category change in favor of the left hand (increase right-hand lines),
making the accuracy modified prescription 4-1: four lines of right to one line of left.

Constructing the packets. Following the formulation of prescriptions for each subject in Level 3, Left-hand/right-hand Prescribed practice, individualized practice packets were constructed.

In cases where there was a sufficient degree of difference to necessitate a proportional prescription, the right hand was the weaker hand in the majority of cases. There were four prescriptions made for right-hand improvement as follows: 2R-1L (two right-hand lines to one left-hand line), 3R-1L, 4R-1L, and 5R-1L. There was only one prescription for left-hand improvement: 2L-1R. In some cases a sufficient degree of difference between hands was not found and a 1R-1L prescription was made. Table IV shows the number of students assigned to each type of prescription.

<table>
<thead>
<tr>
<th>Prescription</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1R-1L</td>
<td>27</td>
</tr>
<tr>
<td>2R-1L</td>
<td>26</td>
</tr>
<tr>
<td>3R-1L</td>
<td>20</td>
</tr>
<tr>
<td>4R-1L</td>
<td>7</td>
</tr>
<tr>
<td>5R-1L</td>
<td>2</td>
</tr>
<tr>
<td>2L-1R</td>
<td>3</td>
</tr>
</tbody>
</table>

Lines of left-hand and right-hand words taken from the Level 2 packet were arranged proportionately to correspond to each of the
prescriptions. Therefore, six prescribed packets were constructed. The six-page packets included five pages of practice lines and an instruction sheet (168 to 170 lines depending on the prescription). Each student in the prescribed group received an assigned packet labeled with his/her name.

Material for the 3R-1L packet is located in Appendix C.

Duration of the Treatments

The practice was conducted for five minutes per day, four/five days per week, for approximately three consecutive weeks during the middle of first semester, 1982-1983, providing a total of 75 minutes (15 sessions) of treatment time. The treatment time of five minutes per day included only time spent typing the practice materials and did not include giving directions, distributing packets, labeling pages, or any other such procedure.

Initial measures of the dependent variable criteria were obtained during the week preceding treatment in order to allow sufficient time to formulate prescriptions for the Level 3 group and to duplicate individualized packets.

Posttests were conducted on the first day following treatment. Table V provides the timetable used in the study.
TABLE V
TIMETABLE FOR THE STUDY

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretesting</td>
<td>October 18</td>
</tr>
<tr>
<td>Practice</td>
<td>October 27-November 18*</td>
</tr>
<tr>
<td>Posttesting</td>
<td>November 19</td>
</tr>
</tbody>
</table>

*Two days were teacher workdays; fifteen total treatment days.

Eighty percent attendance at the practice sessions and participation in the pretest and posttest were required for a subject's performance to be included in the data analysis.

Conducting the Practice

On the first day of practice, students were given practice paper and a practice packet which contained the practice materials and instructions for the practice sessions. The following instructions were included in the packet and explained by the instructor:

1. DO NOT TYPE practice lines until your instructor tells you to do so.

2. In the upper right hand corner, label your color-coordinated practice paper as follows:
 - School/Teacher
 - Class time
 - Your name (last name first)
 - Type of practice
 - Date

4. Type lines as written. Do not type line numbers. Do not correct errors.

5. Type at a rate that is slightly faster than is comfortable. Use both sides of the practice paper if necessary.

6. When the five minutes of practice is completed:
 1) Count the number of completed lines typed and write the number at the top of your practice paper next to the date.
 2) Mark the practice line that you will start with the next day by circling the line number with a pencil.

7. Turn in your practice work and the practice materials to your instructor.

8. If you finish the materials provided before the study is concluded, start the packet over.

Students were made aware that the practice materials were different but were reassured that all types of practice were highly recommended. Practice packets were duplicated on paper of different colors for each treatment and subjects were provided practice paper of corresponding colors in order to facilitate recordkeeping.

Students were requested to count the number of lines typed in order to encourage purposeful practice and to provide instructors with a monitoring device. Instructors were required to check typescripts periodically to ensure that students were typing at the desired rate—a little faster than comfortable.

Instructors collected practice typescripts and packets at the conclusion of each session. An examination of typescripts at the conclusion of the study showed that students either increased or retained the number of lines typed from day to day during the course of the study.
Prior to the first day of practice, instructors received a set of practice guidelines and were trained in practice procedures by the researcher. Appendix D contains the practice guidelines given to instructors.

Testing

Pretesting and posttesting of the dependent variable criteria consisted of the same eight timed writings administered in the following order on each occasion:

1. Two three-minute straight-copy;
2. One one-minute left-hand copy;
3. One one-minute right-hand copy;
4. One one-minute left-hand copy;
5. One one-minute right-hand copy;
6. One one-minute left-hand copy; and
7. One one-minute right-hand copy.

Speed and accuracy measures were obtained for straight-copy, left-hand, and right-hand copy by averaging each set of timings of that type.

Copy for the two three-minute, straight-copy timings was selected from Modern College Typewriting--A Complete Course (West, 1977) with permission.

The six one-minute timings developed by the researcher each contained three 60-stroke lines. Copy for all timings is located in Appendix E.

Prior to pretesting, a training session was conducted for all
teachers involved in the study. The importance of strict adherence to prescribed testing procedures was stressed. Instructors were advised of the critical nature of exact timing lengths and were required to utilize a stopwatch and exercise utmost care in the administration of all timed writings.

Detailed testing procedures were explained and discussed at the training session and written copies of the procedures provided for self-study. A review of testing procedures was conducted prior to the posttest. A copy of the testing procedures is located in Appendix F.

Teachers were asked to report any deviations from prescribed testing procedures. None were reported. An examination of all pretest and posttest timed writings revealed no discrepancies such as consistent gross differences in speeds by a class on three timings of one type which would suggest improper timing by the instructor.

Treatment of the Data

All timed writings were proofread twice and scored for speed and accuracy.

Typewriting words were counted for straight-copy timed writings using West's (1977) published word counts and for one-minute timed writings using word counts constructed by the researcher (5 strokes per word). Partial lines in both cases were counted using a typewriting ruler which measured each five strokes as a word with a remainder of 3 or 4 strokes being counted as a complete word.

The following items were considered typographical errors in
measuring errors per minute for this study.

1. Misstroke(s) within a word--one error per word.

2. Incorrect punctuation following a word--counted as part of the word and followed the one error per word rule.

3. Spacing errors such as more or fewer spaces between words than required or one space after a sentence or a colon--counted as a separate error and not as part of the word for purposes of the one error per word rule.

4. A line extending more than one-half inch into the margin; a line ending (except for the last paragraph) more than one-half inch inside the margin.

5. A strike-over.

6. Improper indentation.

7. Line or portion of line omitted or added counted as one error, but words were added or subtracted from the word count.

8. Hands on wrong keys--one error.

9. Incorrect vertical spacing--if directions were to double space the timing, single spacing of the timing counted as one error; otherwise, each separate instance of incorrect vertical spacing counted as one error.

The results of scoring and other information were transferred to computer coding sheets. Computer-generated frequency distributions for each dependent variable were compared with scores on the coding sheets to verify keypunching accuracy.
Statistical analysis of the data was performed on the Winona State University Univac time-sharing computer, utilizing the analysis of covariance program in the Statistical Package for the Social Sciences (Nie et al., 1975).
CHAPTER IV

FINDINGS

The findings of this study are presented in two sections: 1) description of the groups including pretest and posttest raw score data, and 2) tests of statistical significance.

Speed measures are reported in gross words per minute (gwpm) and error measures are reported in errors per minute (epm). Other abbreviations used in this chapter are explained as follows:

1. PROSE--groups practicing ordinary prose.
2. LHRH-E--groups practicing equal amounts of left-hand and right-hand lines.
3. LHRH-P--group practicing a prescribed number of left-hand and right-hand lines.
4. Pre--pretest; Post--posttest.
5. M--arithmetic mean.
6. SD--standard deviation.

Description of the Groups

The treatment variable, type of practice, consisted of three levels: 1) Prose practice, 2) Left-hand/right-hand Equal practice, and 3) Left-hand/right-hand Prescribed practice. The initial speed level variable consisted of two levels: 1) high, and 2) low.

The highest retention rate (number of subjects included in the
data analysis divided by the number of subjects pretested) was for the LHRH-E group, followed by the LHRH-P group, with the PROSE group having the lowest rate. Of the 284 subjects pretested, 260 (91.5%) were included in the data analysis. Eighty percent attendance at practice sessions and participation in the pretest and posttest were required for a subject's performance to be included in the data analysis.

Table VI shows the retention rates by practice group for each high school and for the total sample.

<table>
<thead>
<tr>
<th>Practice Group</th>
<th>School A</th>
<th>School B</th>
<th>School C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROSE</td>
<td>89.1</td>
<td>100</td>
<td>84.2</td>
<td>89.5</td>
</tr>
<tr>
<td>LHRH-E</td>
<td>93.8</td>
<td>100</td>
<td>90.5</td>
<td>93.8</td>
</tr>
<tr>
<td>LHRH-P</td>
<td>88.7</td>
<td>100</td>
<td>95.0</td>
<td>91.4</td>
</tr>
<tr>
<td>Total Sample</td>
<td>90.5</td>
<td>100</td>
<td>90.0</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Of the 260 subjects included in the data analysis, there were 85 subjects in the PROSE group, 90 subjects in the LHRH-E group, and 85 subjects in the LHRH-P group. Each initial speed level group consisted of 130 subjects. Table VII shows the distribution of subjects by practice and initial speed level.
TABLE VII
DISTRIBUTION OF SUBJECTS BY PRACTICE GROUP AND SPEED LEVEL GROUP

<table>
<thead>
<tr>
<th>Speed Level</th>
<th>PROSE</th>
<th>LHRH-E</th>
<th>LHRH-P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>41</td>
<td>42</td>
<td>47</td>
<td>130</td>
</tr>
<tr>
<td>Low</td>
<td>44</td>
<td>48</td>
<td>38</td>
<td>130</td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td>90</td>
<td>85</td>
<td>260</td>
</tr>
</tbody>
</table>

Straight-copy Pretest and Posttest Results

The straight-copy pretest and posttest speed and accuracy measures were obtained by the administration of the same pair of three-minute timed writings on each occasion.

Straight-copy Speed

Pretest straight-copy speed means ranged from 21.0 gwpm for the LHRH-E group to 23.0 gwpm for the LHRH-P group. A pretest difference in means of 9.3 gwpm was found between the low and high initial speed level groups.

Posttest straight-copy speed means ranged from 27.2 gwpm for the LHRH-E group to 30.1 gwpm for the LHRH-P group, with the LHRH-E group showing the smallest gain in speed (6.2 gwpm) from pretest to posttest, as compared to gains of 7.1 gwpm for the LHRH-P group and 7.5 gwpm for the PROSE group. A posttest difference in means of 11.7 gwpm was found between the low and high initial speed level groups.
Table VIII summarizes straight-copy speed pretest and posttest measures of central tendency (M) and dispersion (SD) for each treatment group, each initial speed level group, and the six classifications resulting from the combination of practice groups and initial speed level groups.

TABLE VIII
MEASURES OF CENTRAL TENDENCY AND DISPERSION
OF PRETEST AND POSTTEST STRAIGHT-COPY
SPEED RAW SCORES (GWPM)

<table>
<thead>
<tr>
<th>Speed Level Stat.</th>
<th>Practice Groups</th>
<th>PROSE</th>
<th>LHRH-E</th>
<th>LHRH-P</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>High M</td>
<td>26.2</td>
<td>35.5</td>
<td>25.4</td>
<td>32.2</td>
<td>27.3</td>
</tr>
<tr>
<td>High SD</td>
<td>4.0</td>
<td>5.9</td>
<td>3.7</td>
<td>5.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Low M</td>
<td>16.4</td>
<td>22.1</td>
<td>17.2</td>
<td>22.7</td>
<td>17.6</td>
</tr>
<tr>
<td>Low SD</td>
<td>3.1</td>
<td>4.6</td>
<td>3.5</td>
<td>5.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Total M</td>
<td>21.1</td>
<td>28.6</td>
<td>21.0</td>
<td>27.2</td>
<td>23.0</td>
</tr>
<tr>
<td>Total SD</td>
<td>6.0</td>
<td>8.6</td>
<td>5.5</td>
<td>7.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Straight-copy Accuracy

Pretest straight-copy accuracy means ranged from 1.7 epm for the LHRH-E group to 2.0 epm for the LHRH-P group. A pretest difference in means of .6 epm was found between the low and high initial speed level groups with the low group exhibiting greater accuracy.

Posttest straight-copy accuracy means ranged from 2.8 epm for
the LHRH-E group to 3.3 epm for the PROSE group. For all three practice groups, the average number of errors per minute increased from the pretest to the posttest, with the greatest increase in errors per minute occurring in the PROSE group (1.4 epm), followed by the LHRH-E group (1.1 epm), with the smallest increase occurring in the LHRH-P group (.9 epm).

A posttest difference in means of .8 epm was found between the low and high initial speed level groups, with the low group retaining greater accuracy. For both initial speed level groups, the average number of errors per minute increased from the pretest to the posttest, with the greater increase occurring in the high group.

Table IX summarizes straight-copy accuracy pretest and posttest measures of central tendency and dispersion for each treatment group, each initial speed level group, and each of six classifications resulting from the combination of practice groups and speed level groups.
TABLE IX
MEASURES OF CENTRAL TENDENCY AND DISPERSION
OF PRETEST AND POSTTEST STRAIGHT-COPY
ACCURACY RAW SCORES (EPM)

Practice Groups

<table>
<thead>
<tr>
<th>Speed Level</th>
<th>Stat.</th>
<th>Prose Pre</th>
<th>Prose Post</th>
<th>LHRH-E Pre</th>
<th>LHRH-E Post</th>
<th>LHRH-P Pre</th>
<th>LHRH-P Post</th>
<th>Total Pre</th>
<th>Total Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>M</td>
<td>2.0</td>
<td>3.3</td>
<td>2.2</td>
<td>3.5</td>
<td>2.3</td>
<td>3.4</td>
<td>2.2</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.1</td>
<td>1.9</td>
<td>1.2</td>
<td>1.8</td>
<td>1.5</td>
<td>1.9</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Low</td>
<td>M</td>
<td>1.8</td>
<td>3.3</td>
<td>1.3</td>
<td>2.2</td>
<td>1.7</td>
<td>2.3</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.6</td>
<td>4.0</td>
<td>.9</td>
<td>1.4</td>
<td>1.1</td>
<td>1.4</td>
<td>1.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Total</td>
<td>M</td>
<td>1.9</td>
<td>3.3</td>
<td>1.7</td>
<td>2.8</td>
<td>2.0</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.4</td>
<td>3.1</td>
<td>1.1</td>
<td>1.7</td>
<td>1.4</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Left-hand Pretest and Posttest Results

The left-hand pretest and posttest speed and accuracy measures were obtained by the administration of the same three, one-minute timed writings on each occasion.

Left-hand Speed

Pretest left-hand speed means ranged from 21.6 gwpm for the LHRH-E group to 24.3 gwpm for the LHRH-P group. A pretest difference in means of 9.1 gwpm was found between the low and high initial speed level groups.

Posttest straight-copy speed means ranged from 28.1 gwpm for the
PROSE group to 32.2 gwpm for the LHRH-P group. The PROSE group showed the smallest gain in speed (5.9 gwpm) from pretest to posttest, as compared to gains of 7.4 gwpm for the LHRH-E group and 7.9 gwpm for the LHRH-P group. A posttest difference in means of 11.6 gwpm was found between the low and high initial speed level groups.

Table X gives the left-hand speed pretest and posttest measures of central tendency and dispersion for each treatment group, each initial speed level group, and each classification resulting from the combination of practice groups and speed level groups.

TABLE X

MEASURES OF CENTRAL TENDENCY AND DISPERSION OF PRETEST AND POSTTEST LEFT-HAND SPEED RAW SCORES (GWPM)

<table>
<thead>
<tr>
<th>Speed Level</th>
<th>Stat.</th>
<th>PROSE</th>
<th>LHRH-E</th>
<th>LHRH-P</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>High</td>
<td>M</td>
<td>27.2</td>
<td>34.7</td>
<td>25.8</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>4.0</td>
<td>5.1</td>
<td>4.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Low</td>
<td>M</td>
<td>17.5</td>
<td>22.0</td>
<td>17.9</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>3.7</td>
<td>4.5</td>
<td>3.7</td>
<td>5.1</td>
</tr>
<tr>
<td>Total</td>
<td>M</td>
<td>22.2</td>
<td>28.1</td>
<td>21.6</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6.2</td>
<td>8.0</td>
<td>5.5</td>
<td>7.1</td>
</tr>
</tbody>
</table>
Left-hand Accuracy

Pretest left-hand accuracy means ranged from 2.7 epm for the LHRH-E group to 3.4 epm for the PROSE group. A pretest difference in means of 1.3 epm was found between the low and high initial speed level groups, with the low group exhibiting greater accuracy.

Posttest left-hand accuracy means ranged from 5.0 epm for the LHRH-E group to 5.7 epm for the LHRH-P group. For all three practice groups, the average number of errors increased from the pretest to the posttest, with the greatest increase in errors per minute occurring in the LHRH-P group (2.4 epm), followed by the LHRH-E group (2.3 epm), with the smallest increase occurring in the PROSE group (1.7 epm).

A posttest difference in means of 1.7 errors per minute was found between the high and low initial speed level groups, with the low group retaining greater accuracy. For both initial speed level groups, the average number of errors per minute increased from the pretest to posttest, with the greater increase occurring in the high group.

Table XI gives the left-hand accuracy pretest and posttest measures of central tendency and dispersion for each treatment group, each initial speed level group, and each classification resulting from the combination of practice groups and speed level groups.
TABLE XI
MEASURES OF CENTRAL TENDENCY AND DISPERSION
OF PRETEST AND POSTTEST LEFT-HAND ACCURACY RAW SCORES (EPM)

<table>
<thead>
<tr>
<th>Practice Groups</th>
<th>PROSE</th>
<th>LHRH-E</th>
<th>LHRH-P</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Level</td>
<td>Stat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>High</td>
<td>M</td>
<td>3.8</td>
<td>5.7</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2.0</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Low</td>
<td>M</td>
<td>3.0</td>
<td>4.5</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>3.1</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>M</td>
<td>3.4</td>
<td>5.1</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2.7</td>
<td>3.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Right-hand Pretest and Posttest Results

The right-hand pretest and posttest speed and accuracy measures were obtained by the administration of the same three, one-minute timed writings on each occasion.

Right-hand Speed

Pretest right-hand speed means ranged from 20.2 gwpm for the LHRH-E group to 22.0 gwpm for the LHRH-P group. A pretest difference in means of 7.3 gwpm was found between the high and low initial speed level groups.

Posttest right-hand speed means ranged from 25.9 gwpm for the
The PROSE group showed the smallest gain in speed (5.3 gwpm), as compared to gains of 7.8 gwpm for the LHRH-E group and 9.8 gwpm for the LHRH-P group.

A posttest difference in means of 10.1 gwpm was found between the low and high initial speed level groups.

Table XII gives the right-hand speed pretest and posttest measures of central tendency and dispersion for each treatment group, each initial speed level group, and each classification resulting from the combination of practice groups and speed level groups.

TABLE XII
MEASURES OF CENTRAL TENDENCY AND DISPERSION OF PRETEST AND POSTTEST RIGHT-HAND SPEED RAW SCORES (GWPM)

<table>
<thead>
<tr>
<th>Practice Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Level</td>
</tr>
<tr>
<td>Stat.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pre</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Right-hand Accuracy

Pretest right-hand accuracy means ranged from 3.1 epm for the LHRH-E group to 3.7 epm for the LHRH-P and PROSE groups. A pretest difference in means of 1.4 epm was found between the low and high initial speed level groups, with the low group exhibiting greater accuracy.

Posttest right-hand accuracy means ranged from 5.2 epm for the PROSE group to 6.9 epm for the LHRH-P group. For all three practice groups, the average number of errors per minute increased from the pretest to posttest, with the greatest increase in errors per minute occurring in the LHRH-P group (3.2 epm), followed by the LHRH-E group (2.5 epm), with the smallest increase occurring in the PROSE group (1.5 epm).

A posttest difference in means of 1.7 epm was found between the low and high initial speed level groups, with the low group retaining greater accuracy. For both initial speed level groups, the average number of errors per minute increased from the pretest to posttest, with the greater increase occurring in the high group.

Table XIII gives the right-hand accuracy pretest and posttest measures of central tendency and dispersion for each treatment group, each initial speed level group, and each classification resulting from the combination of practice groups and speed level groups.
TABLE XIII
MEASURES OF CENTRAL TENDENCY AND DISPERSION
OF PRETEST AND POSTTEST RIGHT-HAND
ACCURACY RAW SCORES (EPM)

<table>
<thead>
<tr>
<th>Practice Groups</th>
<th>Prose</th>
<th>LHRH-E</th>
<th>LHRH-P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Level Stat.</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>High M</td>
<td>4.1</td>
<td>5.8</td>
<td>4.0</td>
<td>6.4</td>
</tr>
<tr>
<td>SD</td>
<td>2.2</td>
<td>2.6</td>
<td>1.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Low M</td>
<td>3.3</td>
<td>4.6</td>
<td>2.4</td>
<td>4.8</td>
</tr>
<tr>
<td>SD</td>
<td>3.2</td>
<td>4.0</td>
<td>1.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

| Total M | 3.7 | 5.2 | 3.1 | 5.6 | 3.7 | 6.9 |
| SD | 2.8 | 3.4 | 2.0 | 3.8 | 2.5 | 4.8 |

Tests of Statistical Significance

The statistical model, hypothesis testing for the total sample, hypothesis testing for the high initial speed level classification, and hypothesis testing for the low initial speed level classification are presented in this section.

Statistical Model

The hypotheses were tested using analysis of covariance. Statistical significance at the .05 level of confidence was necessary to reject the statistical hypotheses.

Covariates. Respective initial measures of the dependent
variable criteria were used as covariates. For example, in testing the hypothesis related to straight-copy speed, pretest straight-copy speed was used as the covariate; in testing the hypothesis related to straight-copy accuracy, pretest straight-copy accuracy was used as the covariate, and so on.

Degrees of freedom. The use of covariates resulted in the loss of one additional degree of freedom. Therefore, in each analysis, degrees of freedom are N (number of subjects) minus K (number of groups) minus one additional for the covariate.

Statistical tests. Eighteen hypotheses were tested. For each of the six dependent variables, three hypotheses were tested: 1) comparison of practice groups for the total sample, 2) comparison of the practice groups with the model replicated for the high initial speed level classification, and 3) comparison of practice groups with the model replicated for the low initial speed level classification.

Sums of squares, degrees of freedom (df), mean square, calculated F value (F), the significance of F (p), and means adjusted for the effects of the covariate are provided in the tables summarizing the results of hypothesis testing.

Hypothesis Testing--Total Sample

There were 85 subjects in the Prose group (PROSE), 90 subjects in the Left-hand/right-hand Equal group (LHRH-E), and 85 subjects in the Left-hand/right-hand Prescribed group (LHRH-P).

Straight-copy speed. Table XIV provides the analysis of covariance results, including adjusted group means for the dependent
variable, straight-copy speed. Pretest straight-copy speed was used as the covariate.

TABLE XIV
STRAIGHT-COPY SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>13634.939</td>
<td>1</td>
<td>13634.939</td>
<td>1502.529</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>65.203</td>
<td>2</td>
<td>32.601</td>
<td>3.593</td>
<td>.029</td>
</tr>
<tr>
<td>Residual</td>
<td>2323.113</td>
<td>256</td>
<td>9.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16023.254</td>
<td>259</td>
<td>61.866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>29.22</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>28.00</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>28.55</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 3.593 is .029, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the straight-copy speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 256 degree of freedom, the estimated standard error of the mean is .3255 and the significant range is 1.08.
The adjusted means of the PROSE group (29.22) and the LHRH-E group (28.00) differed by 1.22 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. On straight-copy speed, the adjusted mean of the PROSE group was significantly greater than the adjusted mean of the LHRH-E group.

The adjusted means of the PROSE group (29.22) and the LHRH-P group (28.55) differed by .67 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the PROSE group and the LHRH-P group are equal was not rejected.

The adjusted means of the LHRH-E group (28.00) and the LHRH-P group (28.55) differ by .55 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Straight-copy accuracy. Table XV provides the results of the analysis of covariance, including adjusted group means for the dependent variable, straight-copy accuracy. Pretest straight-copy accuracy was used as the covariate.
TABLE XV

STRAIGHT-COPY ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>342.321</td>
<td>1</td>
<td>342.321</td>
<td>87.807</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>8.628</td>
<td>2</td>
<td>4.314</td>
<td>1.107</td>
<td>.332</td>
</tr>
<tr>
<td>Residual</td>
<td>998.032</td>
<td>256</td>
<td>3.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1348.981</td>
<td>259</td>
<td>5.208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>3.26</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>2.96</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>2.82</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 1.107 is .332, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the straight-copy accuracy means of the populations for the various treatment levels are equal was not rejected.

Left-hand speed. Table XVI provides the results of the analysis of covariance, including adjusted group means for the dependent variable, left-hand speed. Pretest left-hand speed was used as the covariate.
TABLE XVI

LEFT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>13553.749</td>
<td>1</td>
<td>13553.749</td>
<td>1647.220</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>164.992</td>
<td>2</td>
<td>82.496</td>
<td>10.026</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>2106.434</td>
<td>256</td>
<td>8.228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15825.175</td>
<td>259</td>
<td>61.101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpms)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>28.63</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>30.32</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>30.34</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 10.026 is beyond .001, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the left-hand speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 256 degrees of freedom, the estimated standard error of the mean is .3111 and the significant range is 1.03.

The adjusted means of the PROSE group (28.63) and the LHRH-E group (30.32) differed by 1.69 gwpms. The statistical hypothesis that
the left-hand speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. The adjusted mean of the LHRH-E group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the PROSE group (28.63) and the LHRH-P group (30.34) differed by 1.71 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On left-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E group (30.32) and the LHRH-P group (30.34) differed by .02 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Left-hand accuracy. Table XVII provides the results of the analysis of covariance, including adjusted group means for the dependent variable, left-hand accuracy. Pretest left-hand accuracy was used as the covariate.
TABLE XVII
LEFT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1436.264</td>
<td>1</td>
<td>1436.264</td>
<td>171.388</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>25.374</td>
<td>2</td>
<td>12.687</td>
<td>1.514</td>
<td>.222</td>
</tr>
<tr>
<td>Residual</td>
<td>2145.325</td>
<td>256</td>
<td>8.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3606.963</td>
<td>259</td>
<td>13.926</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>4.82</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>5.47</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>5.51</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 1.514 is .222, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the left-hand accuracy means of the populations for the various treatment levels are equal was not rejected.

Right-hand speed. Table XVIII provides the results of the analysis of covariance, including adjusted group means for the dependent variable, right-hand speed. Pretest right-hand speed was used as the covariate.
TABLE XVIII
RIGHT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>10211.570</td>
<td>1</td>
<td>10211.570</td>
<td>953.177</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>773.441</td>
<td>2</td>
<td>386.721</td>
<td>36.098</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>2742.578</td>
<td>256</td>
<td>10.713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13727.589</td>
<td>259</td>
<td>53.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>26.22</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>28.93</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>30.45</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 36.098 is beyond .001, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the right-hand speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 256 degrees of freedom, the estimated standard error of the mean is .3539 and the significant range is 1.17.

The adjusted means of the PROSE group (26.22) and the LHRH-E group (28.93) differed by 2.71 gwpm. The statistical hypothesis that
the right-hand speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-E group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the PROSE group (26.22) and the LHRH-P group (30.45) differed by 4.23 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E (28.93) group and the LHRH-P group (30.45) differed by 1.52 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the LHRH-E group and the LHRH-P group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the LHRH-E group.

Right-hand accuracy. Table XIX provides the results of the analysis of covariance, including adjusted group means for the dependent variable, right-hand accuracy. Pretest right-hand accuracy was used as the covariate.
TABLE XIX
RIGHT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1815.407</td>
<td>1</td>
<td>1815.407</td>
<td>194.803</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>121.549</td>
<td>2</td>
<td>60.775</td>
<td>6.521</td>
<td>.002</td>
</tr>
<tr>
<td>Residual</td>
<td>2385.710</td>
<td>256</td>
<td>9.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4322.666</td>
<td>259</td>
<td>16.690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>4.98</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>5.96</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>6.66</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 6.521 is .002, with 2 and 256 degrees of freedom. Therefore, the statistical hypothesis that the right-hand accuracy means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 256 degrees of freedom, the estimated standard error of the mean is .3290 and the significant range is 1.09.

The adjusted means of the PROSE group (4.98) and the LHRH-E group (5.96) differed by .98 epm. The statistical hypothesis that
right-hand accuracy means of the populations for the PROSE group and the LHRH-E group are equal was not rejected.

The adjusted means of the PROSE group (4.98) and the LHRH-P group (6.66) differed by 1.68 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On right-hand accuracy, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE Group.

The adjusted means of the LHRH-E group (5.96) and the LHRH-P group (6.66) differed by .70 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Summary. In the analysis of covariance for the total sample, four of six statistical hypotheses were rejected for the main effects of practice: straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy.

On straight-copy speed, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-E group in favor of the PROSE group; no significant differences were found between the PROSE and LHRH-P groups or between the LHRH-E and the LHRH-P groups.

On left-hand speed, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-E group in favor of the LHRH-E group and a significant difference between the PROSE group and the LHRH-P group in favor of the LHRH-P group. No significant difference was found between the LHRH-E group and the
LHRH-P group.

On right-hand speed, pair-wise mean comparisons showed a significant difference for each pair of means. The LHRH-P group was significantly higher than the LHRH-E group which was significantly higher than the PROSE group.

On right-hand accuracy, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-P group in favor of the PROSE group; no other significant differences between groups were found.

Table XX provides a summary of the results of hypothesis testing for the total sample. Adjusted speed means are reported in gwpm; adjusted error means are reported in epm.
TABLE XX

SUMMARY OF HYPOTHESIS TESTING--TOTAL SAMPLE

<table>
<thead>
<tr>
<th>Variable</th>
<th>p</th>
<th>Adjusted Means*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-copy Speed</td>
<td>.029**</td>
<td>LHRH-E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.00</td>
</tr>
<tr>
<td>Straight-copy Accuracy</td>
<td>.332</td>
<td>PROSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.26</td>
</tr>
<tr>
<td>Left-hand Speed</td>
<td>.000**</td>
<td>PROSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.63</td>
</tr>
<tr>
<td>Left-hand Accuracy</td>
<td>.222</td>
<td>LHRH-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.51</td>
</tr>
<tr>
<td>Right-hand Speed</td>
<td>.000**</td>
<td>PROSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.22</td>
</tr>
<tr>
<td>Right-hand Accuracy</td>
<td>.002**</td>
<td>LHRH-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.66</td>
</tr>
</tbody>
</table>

*Lines between Adjusted Means indicate significant differences. No line indicates that the difference was not significant at the .05 level.

**The statistical hypothesis for covariance was rejected.

Hypothesis Testing--High Speed Level

There were 41 subjects in the Prose (PROSE) group, 42 subjects
in the Left-hand/right-hand Equal (LHRH-E) group and 47 subjects in
the Left-hand/right-hand Prescribed (LHRH-P) group for a total of 130
subjects in the model replicated for the high initial speed level
classification. Subjects in this classification obtained speeds of
21.0 gwpm or higher on the straight-copy pretest.

Straight-copy speed. Table XXI provides the results of the
analysis of covariance, including adjusted group means for the high
initial speed level classification on the dependent variable,
straight-copy speed. Pretest straight-copy speed was used as the
covariate.

TABLE XXI

**STRAIGHT-COPY SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED
GROUP MEANS FOR THE HIGH INITIAL
SPEED LEVEL CLASSIFICATION**

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2839.256</td>
<td>1</td>
<td>2839.256</td>
<td>299.532</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>125.114</td>
<td>2</td>
<td>62.557</td>
<td>6.600</td>
<td>.002</td>
</tr>
<tr>
<td>Residual</td>
<td>1194.351</td>
<td>126</td>
<td>9.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4158.722</td>
<td>129</td>
<td>32.238</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>35.72</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>33.26</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>34.33</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.
The probability of the calculated F value of 6.600 is .002, with 2 and 126 degrees of freedom. Therefore, in the high initial speed level classification, the statistical hypothesis that the straight-copy speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .4728 and the significant range is 1.59.

The adjusted means of the PROSE group (35.72) and the LHRH-E group (33.26) differed by 2.46 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. On straight-copy speed, the adjusted mean of the PROSE group was significantly greater than the adjusted mean of the LHRH-E group.

The adjusted means of the PROSE group (35.72) and the LHRH-P group (34.33) differed by 1.39 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the PROSE group and the LHRH-P group are equal was not rejected.

The adjusted means of the LHRH-E group (33.26) and the LHRH-P group (34.33) differed by 1.07 gwpm. The statistical hypothesis that the straight-copy speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Straight-copy accuracy. Table XXII provides the results of the analysis of covariance, including adjusted group means for the high initial speed level classification on the dependent variable,
straight-copy accuracy. Pretest straight-copy accuracy was used as the covariate.

TABLE XXII

STRAIGHT-COPY ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE HIGH INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>152.441</td>
<td>1</td>
<td>152.441</td>
<td>67.539</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>.621</td>
<td>2</td>
<td>.310</td>
<td>.138</td>
<td>.872</td>
</tr>
<tr>
<td>Residual</td>
<td>284.391</td>
<td>126</td>
<td>2.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>437.453</td>
<td>129</td>
<td>3.391</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>3.36</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>3.49</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>3.33</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of .138 is .872, with 2 and 126 degrees of freedom. Therefore, in the high initial speed level classification, the statistical hypothesis that the straight-copy accuracy means of the populations for the various treatment levels are equal was not rejected.

Left-hand speed. Table XXIII provides the results of the analysis of covariance, including adjusted group means for the high
initial speed level classification on the dependent variable, left-hand speed. Pretest left-hand speed was used as the covariate.

TABLE XXIII
LEFT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE HIGH INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2252.069</td>
<td>1</td>
<td>2252.069</td>
<td>249.892</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>67.298</td>
<td>2</td>
<td>33.649</td>
<td>3.734</td>
<td>.027</td>
</tr>
<tr>
<td>Residual</td>
<td>1135.532</td>
<td>126</td>
<td>9.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3454.900</td>
<td>129</td>
<td>26.782</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>34.60</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>35.66</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>36.36</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 3.734 is .027, with 2 and 126 degrees of freedom. Therefore, in the high initial speed level classification, the statistical hypothesis that the left-hand speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With
2 and 126 degrees of freedom, the estimated standard error of the mean is .4642 and the significant range is 1.56.

The adjusted means of the PROSE group (34.60) and the LHRH-E group (35.66) differed by 1.06 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the PROSE group and the LHRH-E group are equal was not rejected.

The adjusted means of the PROSE group (34.60) and the LHRH-P group (36.36) differed by 1.76 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On left-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E group (35.66) and the LHRH-P group (36.36) differed by .70 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Left-hand accuracy. Table XXIV provides the results of the analysis of covariance, including adjusted group means for the high initial speed level classification on the dependent variable, left-hand accuracy. Pretest left-hand accuracy was used as the covariate.
TABLE XXIV
LEFT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE HIGH INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>548.048</td>
<td>1</td>
<td>548.048</td>
<td>72.803</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>10.818</td>
<td>2</td>
<td>5.409</td>
<td>.719</td>
<td>.489</td>
</tr>
<tr>
<td>Residual</td>
<td>948.503</td>
<td>126</td>
<td>7.528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1507.369</td>
<td>129</td>
<td>11.685</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>5.73</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>6.45</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>6.08</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of .719 is .489, with 2 and 126 degrees of freedom. Therefore, in the high initial speed level classification, the statistical hypothesis that the left-hand accuracy means of the populations for the various treatment levels are equal was not rejected.

Right-hand speed. Table XXV provides the results of the analysis of covariance, including adjusted group means for the high initial speed classification on the dependent variable, right-hand speed. Pretest right-hand speed was used as the covariate.
TABLE XXV

RIGHT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE HIGH INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2013.018</td>
<td>1</td>
<td>2013.018</td>
<td>220.138</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>650.641</td>
<td>2</td>
<td>325.321</td>
<td>35.576</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>1152.188</td>
<td>126</td>
<td>9.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3815.848</td>
<td>129</td>
<td>29.580</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>30.72</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>33.44</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>36.17</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 35.576 is beyond .001, with 2 and 126 degrees of freedom. Therefore, in the high speed level classification, the statistical hypothesis that the right-hand speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .4646 and the significant range is 1.56.

The adjusted means of the PROSE group (30.72) and the LHRH-E
group (33.44) differed by 2.72 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-E group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the PROSE group (30.72) and the LHRH-P group (36.17) differed by 5.45 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E group (33.44) and the LHRH-P group (36.17) differed by 2.73 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the LHRH-E group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the LHRH-E group.

Right-hand accuracy. Table XXVI provides the results of the analysis of covariance, including adjusted group means for the high initial speed level classification on the dependent variable, right-hand accuracy. Pretest right-hand accuracy was used as the covariate.
TABLE XXVI
RIGHT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE HIGH INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>708.391</td>
<td>1</td>
<td>708.391</td>
<td>80.337</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>64.768</td>
<td>2</td>
<td>32.384</td>
<td>3.673</td>
<td>.028</td>
</tr>
<tr>
<td>Residual</td>
<td>1111.043</td>
<td>126</td>
<td>8.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1884.202</td>
<td>129</td>
<td>14.606</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>5.84</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>6.61</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>7.56</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 3.673 is .028, with 2 and 126 degrees of freedom. Therefore, in the high initial speed level classification, the statistical hypothesis that the right-hand accuracy means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .4526 and the significant range is 1.52.
The adjusted means of the PROSE group (5.84) and the LHRH-E group (6.61) differed by .77 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the PROSE group and the LHRH-E group are equal was not rejected.

The adjusted means of the PROSE group (5.84) and the LHRH-P group (7.56) differed by 1.72 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On right-hand accuracy, the adjusted mean on the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E group (6.61) and the LHRH-P group (7.56) differed by .95 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Summary. In the analysis of covariance for the high initial speed level classification, four of six statistical hypotheses were rejected: straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy.

On straight copy speed, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-E group in favor of the PROSE group; no other significant differences between groups were found.

On left-hand speed, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-P group in favor of the LHRH-P group; no other significant differences between groups were found.
On right-hand speed, pair-wise mean comparisons showed a significant difference between each pair of means. The LHRH-P group was significantly higher than the LHRH-E group which was significantly higher than the PROSE group.

On right-hand accuracy, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-P group in favor of the PROSE group. No other significant differences were found.

Table XXVII provides a summary of hypothesis testing for the high initial speed level classification. Adjusted speed means are reported in gwpm; adjusted error means are reported in epm.

TABLE XXVII
SUMMARY OF HYPOTHESIS TESTING--HIGH SPEED LEVEL

<table>
<thead>
<tr>
<th>Variable</th>
<th>p</th>
<th>Adjusted Means*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-copy Speed</td>
<td>.002**</td>
<td>LHRH-E 33.26 LHRH-P 34.33 PROSE 35.72</td>
</tr>
<tr>
<td>Straight-copy Accuracy</td>
<td>.872</td>
<td>LHRH-E 3.49 PROSE 3.36 LHRH-P 3.33</td>
</tr>
<tr>
<td>Left-hand Speed</td>
<td>.027**</td>
<td>PROSE 34.60 LHRH-E 35.66 LHRH-P 36.36</td>
</tr>
<tr>
<td>Left-hand Accuracy</td>
<td>.489</td>
<td>LHRH-E 6.45 LHRH-P 6.08 PROSE 5.73</td>
</tr>
<tr>
<td>Right-hand Speed</td>
<td>.000**</td>
<td>PROSE 30.72 LHRH-E 33.44 LHRH-P 36.17</td>
</tr>
<tr>
<td>Right-hand Accuracy</td>
<td>.028**</td>
<td>LHRH-P 7.56 LHRH-E 6.61 PROSE 5.84</td>
</tr>
</tbody>
</table>

*Lines between Adjusted Means indicate significant differences. No line indicates that the difference was not significant at the .05 level.
**The statistical hypothesis for covariance was rejected.

Hypothesis Testing--Low Speed Level

There were 44 subjects in the Prose (PROSE) group, 48 subjects in the Left-hand/right-hand Equal (LHRH-E) group and 38 subjects in
the Left-hand/right-hand Prescribed (LHRH-P) group for a total of 130 subjects in the model replicated for the low initial speed level classification.

Straight-copy speed. Table XXVIII summarizes the results of the analysis of covariance including adjusted group means for the low initial speed level classification on the dependent variable, straight-copy speed. Pretest straight-copy speed was used as the covariate.

TABLE XXVIII

STRAIGHT-COPY SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1986.124</td>
<td>1</td>
<td>1986.124</td>
<td>244.352</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>1.996</td>
<td>2</td>
<td>.998</td>
<td>.123</td>
<td>.885</td>
</tr>
<tr>
<td>Residual</td>
<td>1024.142</td>
<td>126</td>
<td>8.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3012.263</td>
<td>129</td>
<td>23.351</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpms)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>22.79</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>22.60</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>22.90</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of .123 is .885, with
2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the straight-copy speed means of the populations for the various treatment levels are equal was not rejected.

Straight-copy accuracy. Table XXIX summarizes the results of the analysis of covariance, including adjusted group means for the low initial speed level classification on the dependent variable, straight-copy accuracy. Pretest straight-copy accuracy was used as the covariate.

TABLE XXIX

STRAIGHT-COPY ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>156.573</td>
<td>1</td>
<td>156.573</td>
<td>28.209</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>18.004</td>
<td>2</td>
<td>9.022</td>
<td>1.625</td>
<td>.201</td>
</tr>
<tr>
<td>Residual</td>
<td>699.367</td>
<td>126</td>
<td>5.551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>873.985</td>
<td>129</td>
<td>6.775</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>3.14</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>2.46</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>2.26</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.
The probability of the calculated F value of 1.625 is .201, with 2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the straight-copy accuracy means of the populations for the various treatment levels are equal was not rejected.

Left-hand speed. Table XXX summarizes the results of the analysis of covariance, including adjusted group means for the low initial speed level classification on the dependent variable, left-hand speed. Pretest left-hand speed was used as the covariate.

TABLE XXX

LEFT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2660.526</td>
<td>1</td>
<td>2660.526</td>
<td>401.861</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>107.118</td>
<td>2</td>
<td>53.559</td>
<td>8.090</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>834.185</td>
<td>126</td>
<td>6.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3601.829</td>
<td>129</td>
<td>27.921</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>22.69</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>24.71</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>24.48</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.
The probability of the calculated F value of 8.090 is beyond .001, with 2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the left-hand speed means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .3962 and the significant range is 1.33.

The adjusted means for the PROSE group (22.69) and the LHRH-E group (24.71) differed by 2.02 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the PROSE and the LHRH-E group are equal was rejected. The adjusted mean of the LHRH-E group was significantly higher than the adjusted mean of the PROSE group.

The adjusted means for the PROSE group (22.69) and the LHRH-P group (24.48) differed by 1.79 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the PROSE and the LHRH-P group are equal was rejected. The adjusted mean of the LHRH-P group was significantly higher than the adjusted mean of the PROSE group.

The adjusted means for the LHRH-E group (24.71) and the LHRH-P group (24.48) differed by .23 gwpm. The statistical hypothesis that the left-hand speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Left-hand accuracy. Table XXXI summarizes the results of the

Note: The table XXXI is not provided in the image.
analysis of covariance, including adjusted group means for the low initial speed level classification on the dependent variable, left-hand accuracy. Pretest left-hand accuracy was used as the covariate.

TABLE XXXI

LEFT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>732.217</td>
<td>1</td>
<td>732.217</td>
<td>79.188</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>26.330</td>
<td>2</td>
<td>13.165</td>
<td>1.424</td>
<td>.245</td>
</tr>
<tr>
<td>Residual</td>
<td>1165.075</td>
<td>126</td>
<td>9.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1923.622</td>
<td>129</td>
<td>14.912</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>3.86</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>4.56</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>4.99</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 1.424 is .245, with 2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the left-hand accuracy means of the populations for the various treatment levels are equal was not rejected.
Right-hand speed. Table XXXII summarizes the results of the analysis of covariance, including adjusted group means for the low initial speed level classification on the dependent variable, right-hand speed. Pretest right-hand speed was used as the covariate.

TABLE XXXII
RIGHT-HAND SPEED: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1778.604</td>
<td>1</td>
<td>1778.604</td>
<td>170.940</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>238.864</td>
<td>2</td>
<td>119.432</td>
<td>11.478</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>1311.014</td>
<td>126</td>
<td>10.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3328.483</td>
<td>129</td>
<td>25.802</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (gwpm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>21.61</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>24.35</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>24.65</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 11.478 is beyond .001, with 2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the right-hand speed means of the populations for the various treatment levels are equal was rejected.
The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .4951 and the significant range is 1.66.

The adjusted means for the PROSE group (21.61) and the LHRH-E group (24.35) differed by 2.74 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the PROSE group and the LHRH-E group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-E group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means for the PROSE group (21.61) and the LHRH-P group (24.65) differed by 3.04 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the PROSE and the LHRH-P group are equal was rejected. On right-hand speed, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means for the LHRH-E group (24.35) and the LHRH-P group (24.65) differed by .30 gwpm. The statistical hypothesis that the right-hand speed means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Right-hand accuracy. Table XXXIII summarizes the results of the analysis of covariance, including adjusted group means for the low initial speed level classification on the dependent variable, right-hand accuracy. Pretest right-hand accuracy was used as the covariate.
TABLE XXXIII
RIGHT-HAND ACCURACY: ANALYSIS OF COVARIANCE AND ADJUSTED GROUP MEANS FOR THE LOW INITIAL SPEED LEVEL CLASSIFICATION

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>924.582</td>
<td>1</td>
<td>924.582</td>
<td>92.067</td>
<td>.000*</td>
</tr>
<tr>
<td>Practice</td>
<td>62.040</td>
<td>2</td>
<td>31.020</td>
<td>3.089</td>
<td>.049</td>
</tr>
<tr>
<td>Residual</td>
<td>1265.350</td>
<td>126</td>
<td>10.042</td>
<td>17.457</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2251.973</td>
<td>129</td>
<td>17.457</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Practice Group Means (epm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Adjusted Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>4.08</td>
</tr>
<tr>
<td>Left-hand/right-hand Equal</td>
<td>5.30</td>
</tr>
<tr>
<td>Left-hand/right-hand Prescribed</td>
<td>5.75</td>
</tr>
</tbody>
</table>

*Significant beyond the .001 level.

The probability of the calculated F value of 3.089 is .049, with 2 and 126 degrees of freedom. Therefore, in the low initial speed level classification, the statistical hypothesis that the right-hand accuracy means of the populations for the various treatment levels are equal was rejected.

The statistical hypothesis for each pair-wise mean comparison was tested at the .05 level of confidence, using the Tukey test. With 2 and 126 degrees of freedom, the estimated standard error of the mean is .4868 and the significant range is 1.64.
The adjusted means of the PROSE group (4.08) and the LHRH-E group (5.30) differed by 1.22 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the PROSE group and the LHRH-E group are equal was not rejected.

The adjusted means of the PROSE group (4.08) and the LHRH-P group (5.75) differed by 1.67 epm. The statistical hypothesis that the right-hand accuracy means of the populations for the PROSE group and the LHRH-P group are equal was rejected. On right-hand accuracy, the adjusted mean of the LHRH-P group was significantly greater than the adjusted mean of the PROSE group.

The adjusted means of the LHRH-E group (5.30) and the LHRH-P group (5.75) differed by .45. The statistical hypothesis that the right-hand accuracy means of the populations for the LHRH-E group and the LHRH-P group are equal was not rejected.

Summary. In the analysis of covariance for the low initial speed level classification, three of six statistical hypotheses for the main effects of practice were rejected: left-hand speed, right-hand speed, and right-hand accuracy.

On left-hand speed, pair-wise mean comparisons showed significant differences between the PROSE group and the LHRH-E group in favor of the LHRH-E group and between the PROSE group and the LHRH-P group in favor of the LHRH-P group; no significant difference was found between the LHRH-E group and the LHRH-P group.

On right-hand speed, pair-wise mean comparisons showed significant differences between the PROSE group and the LHRH-E group in favor of the LHRH-E group and between the PROSE group and the
LHRH-P group in favor of the LHRH-P group. No significant difference was found between the LHRH-E group and the LHRH-P group.

On right-hand accuracy, pair-wise mean comparisons showed a significant difference between the PROSE group and the LHRH-P group in favor of the PROSE group; no other significant differences were found.

Table XXXIV provides a summary of hypothesis testing for the low initial speed level classification. Adjusted speed means are reported in gwpm; adjusted error means are reported in epm.
TABLE XXXIV
SUMMARY OF HYPOTHESIS TESTING--LOW SPEED LEVEL

<table>
<thead>
<tr>
<th>Variable</th>
<th>(p)</th>
<th>LHRH-E</th>
<th>PROSE</th>
<th>LHRH-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight-copy Speed</td>
<td>.885</td>
<td>22.60</td>
<td>22.79</td>
<td>22.90</td>
</tr>
<tr>
<td>Straight-copy Accuracy</td>
<td>.201</td>
<td>3.14</td>
<td>2.46</td>
<td>2.26</td>
</tr>
<tr>
<td>Left-hand Speed</td>
<td>.000**</td>
<td>22.69</td>
<td>24.48</td>
<td>24.71</td>
</tr>
<tr>
<td>Left-hand Accuracy</td>
<td>.245</td>
<td>4.99</td>
<td>4.56</td>
<td>3.86</td>
</tr>
<tr>
<td>Right-hand Speed</td>
<td>.000**</td>
<td>21.61</td>
<td>24.35</td>
<td>24.65</td>
</tr>
<tr>
<td>Right-hand Accuracy</td>
<td>.049**</td>
<td>5.75</td>
<td>5.30</td>
<td>4.08</td>
</tr>
</tbody>
</table>

*Lines between Adjusted Means indicate significant differences. No line indicates that the difference was not significant at the .05 level.

**The statistical hypothesis for covariance was rejected.
CHAPTER V

SUMMARY, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

This chapter presents an overview of the study, conclusions, implications for educational theory and methods, and recommendations for further study.

Overview of the Study

The major focus of this study was to compare the effects of prose practice and a specialized drill, left-hand/right-hand practice, on the development of straight-copy typewriting speed and accuracy. A secondary focus was to compare the effects of the practice on left-hand and right-hand speed and accuracy. In addition, the effects of the practices on stroking skills were examined for subjects with high and low initial straight-copy abilities.

Methods and Procedures

In the experimental design, subjects from twelve classes at three selected southeastern Minnesota high schools were randomly assigned to three types of practice: 1) Prose, ordinary prose copy containing no special combinations of words, 2) Left-hand/right-hand Equal, copy containing an equal number of left-hand lines and right-hand lines, and 3) Left-hand/right-hand Prescribed, copy
containing a proportionate number of left-hand and right-hand lines depending on diagnosed pretest abilities. In the prescribed group, subjects with a weaker right hand practiced more lines with the right hand; subjects with a weaker left hand practiced more lines with the left hand.

There were six dependent variables included in the study: straight-copy speed, straight-copy accuracy, left-hand speed, left-hand accuracy, right-hand speed, and right-hand accuracy.

Pretest and posttest measures of the dependent variable criteria were obtained by the administration of two different three-minute straight-copy timed writings, three different one-minute left-hand timed writings, and three different one-minute right-hand timed writings on each occasion.

The five teachers involved in the study were carefully trained in testing procedures and in the procedures for conducting the practice sessions.

The practice sessions involved five minutes of practice per day, for fifteen days (75 minutes of treatment), for approximately three weeks during the middle of first semester; 1982-1983. Subjects received individualized packets of five pages of practice lines corresponding to their assigned treatments. During the timed five minutes of practice which included typing time only, subjects were advised to type at a slightly faster than comfortable rate. All practice sessions were monitored by the instructors and student type-scripts were collected in order to ensure adherence to the rules of practice.
The statistical hypothesis that on the dependent variable of interest the means of the populations for the three treatment levels are equal was tested for the total sample and for the high and low initial speed level classifications separately. Subjects with pretest straight-copy speeds of 21.0 gwpm and above were placed in the high initial speed level classification; subjects with speeds below 21.0 gwpm were placed in the low initial speed level classification.

Analysis of covariance was used to test the eighteen statistical hypotheses, using respective pretest measures of the dependent variable criteria as covariates. Statistical significance at the .05 level of confidence was required to reject the statistical hypotheses.

Findings

An examination of the raw score pretest and posttest data and the types of prescriptions given to members of the prescribed group revealed a high number of students with right-hand weakness. Right-hand speed scores were consistently lower than left-hand speed scores.

Total sample. In testing the statistical hypothesis for the total sample (n=260), four hypotheses were rejected. There were significant differences among the practice groups on straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy. There were no significant differences among the groups on straight-copy accuracy or left-hand accuracy.

Following rejection for the main effects of the practice, pair-wise mean comparisons, using the Tukey test, were conducted to
test the statistical hypothesis that on the dependent variable of interest the means of the populations for each pair of groups are equal. The Tukey tests showed: (1) a significant difference between the PROSE group and LHRH-E group, in favor of the PROSE group, on straight-copy speed; (2) significant differences between the PROSE group and LHRH-E group, in favor of the LHRH-E group, and between the PROSE and LHRH-P group, in favor of the LHRH-P group, on left-hand speed; (3) significant differences among all three pairs on right-hand speed with the LHRH-P group being significantly higher than LHRH-E group which was significantly higher than PROSE group; and (4) a significant difference between the PROSE group and the LHRH-P group, in favor of the PROSE group, on right-hand accuracy. Other pair-wise mean comparisons for the four dependent variables did not result in significant differences.

High speed level. In testing the statistical hypothesis for the high initial speed level classification (n=130), four hypotheses were rejected. There were significant differences among the practice groups on straight-copy speed, left-hand speed, right-hand speed, and right-hand accuracy. There were no significant differences among the groups on straight-copy accuracy or left-hand accuracy.

Subsequent pair-wise mean comparisons, using the Tukey test, revealed: (1) a significant difference between the PROSE group and the LHRH-E group, in favor of the PROSE group, on straight-copy speed; (2) a significant difference between the PROSE group and the LHRH-P group, in favor of the LHRH-P group, on left-hand speed; (3) significant differences among all three pairs on right-hand speed,
with the LHRH-P group being significantly faster than the LHRH-E group which was significantly faster than the PROSE group; and (4) a significant difference between the PROSE group and the LHRH-P group, in favor of the PROSE group, on right-hand accuracy. Other pair-wise mean comparisons for the four dependent variables did not result in significant differences.

Low speed level. In testing the statistical hypothesis for the low initial speed level classification (n=130), three hypotheses were rejected. There were significant differences among the practice groups on left-hand speed, right-hand speed, and right-hand accuracy. There were no significant differences among the groups on straight-copy speed, straight-copy accuracy, or left-hand accuracy.

Subsequent pair-wise mean comparisons, using the Tukey test, showed: (1) a significant difference between the PROSE group and the LHRH-E group, in favor of the LHRH-E group, and between the PROSE group and the LHRH-P group, in favor of the LHRH-P group, on left-hand speed; (2) significant differences between the PROSE group and the LHRH-E group, in favor of the LHRH-E group, and between the PROSE group and the LHRH-P group, in favor of the LHRH-P group, on right-hand speed; and (3) a significant difference between the PROSE group and the LHRH-P group, in favor of the PROSE group, on right-hand accuracy. Other pair-wise mean comparisons for the three dependent variables did not result in significant differences.

Conclusions

The findings of this study support the following conclusions:
1. Practice using prose copy is more effective than practice using equal amounts of left-hand/right-hand copy in the development of straight-copy speed for students with initial straight-copy ability of 21.0 gwpm or higher.

2. Left-hand/right-hand practice in equal or prescribed amounts is more effective than prose practice in the development of left-hand speed.

3. Left-hand/right-hand practice in equal or prescribed amounts is more effective than prose practice in the development of right-hand speed.

4. Left-hand/right-hand practice in prescribed amounts results in more errors per minute on right-hand copy than does practice using prose copy.

5. Significantly improving one-handed keystroking skill does not improve straight-copy stroking skill.

Implications

A comparison of pretest measures in this study shows right-hand speed scores were slower than left-hand and straight-copy speed scores and that right-hand accuracy scores tended to be higher than left-hand and straight-copy accuracy scores. This finding is consistent with the work of Beaumont (1968), Robinson (1972a), Winger (1965), and others who point to the characteristic weakness of the right hand in typewriting activities.

The findings of this study do not support Winger (1965; 1974), Robinson and Lessenberry (1977), Hall (1981; 1982), and others in the
proposition that improving right-hand ability will improve straight-copy ability. The left-hand/right-hand groups achieved significantly higher left-hand and right-hand speeds than did the Prose group and showed decreases in the difference between left-hand and right-hand mean speeds from pretest to posttest (larger decrease in the Prescribed group) in comparison to an increase in difference for the Prose group. However, the left-hand/right-hand groups did not achieve significantly higher straight-copy speeds. In fact, in both the overall and the high initial speed level classification analyses, the Prose group was significantly faster than the Left-hand/Right-hand Equal group on straight-copy speed.

The findings of the study are similar to the results of a study by Shannon and Robertson (Note 2) of postsecondary typing students; they concluded that improving one-handed keystroking does not improve straight-copy skill. In addition, the left-hand/right-hand groups did not achieve significantly greater straight-copy, left-hand, or right-hand accuracy. The findings regarding accuracy support West's (1969, 1974, 1983) position that specialized drill materials, such as left-hand/right-hand, are of no value in the development of stroking skills. The findings and conclusions are consistent with those of Long (1977) and Prater (1976) who did not find contrived materials to be effective in the development of straight-copy speed and accuracy.

The findings and conclusions of this study, in conjunction with the findings of Shannon and Robertson (Note 2), Long (1977), and Prater (1976), provide strong evidence to support the elimination of left-hand/right-hand drills from typewriting skillbuilding programs.
for high school and college students. These drills show no proven
benefit to the development of straight-copy speed and accuracy which
is the primary focus of straight-copy skillbuilding. Also, there is
evidence to suggest that their use may impair straight-copy skill
development.

The findings and conclusions of the study may give rise to more
far-reaching implications for typewriting instruction and methodology.
If one such specialized drill shows no proven benefit and possible
negative consequences to straight-copy skill development, are there
benefits to using any other types of specialized drills in contrast to
practice on ordinary prose copy?

Recommendations for Further Study

This study should be replicated involving subjects of higher
straight-copy ability, i.e., intermediate and advanced high school and
postsecondary typewriting classes, in order to compare the effects of
the three types of practice on straight-copy speed. The results of
this study indicate that there is support for using only prose
practice, especially for students at higher straight-copy speeds.

Experimental evidence regarding the effectiveness of other
specialized drills in contrast to prose would be beneficial in
determining the proper components of skillbuilding programs.
Experimental research similar to the left-hand/right-hand study should
be conducted to validate the inclusion of other specialized drills,
such as double-letter, reach stroke, concentration, and repetition, in
the typewriting program.
REFERENCE NOTES

BIBLIOGRAPHY

Robinson, J. (Ed.) Strategies of instruction in typewriting. Cincinnati: South-Western, 1972. (b)

West, L. Acquisition of typewriting skills (2nd ed.). Indianapolis: Bobbs-Merrill, 1983.

APPENDICES
APPENDIX A

PROSE PRACTICE

DIRECTIONS:

1. DO NOT TYPE practice lines until your instructor tells you to do so.

2. In the upper right hand corner, label your color-coordinated practice paper as follows:
 School/Teacher
 Class time
 Your name (last name first)
 PROSE
 Date

4. Type lines as written. Do not type line numbers. Do not correct errors.

5. Type at a rate that is slightly faster than is comfortable. Use both sides of the practice paper if necessary.

6. When the five minutes of practice is completed:
 1) count the number of completed lines typed and write the number at the top of your practice paper next to the date.
 2) mark the practice line that you will start with the next day by circling the line number with a pencil.

7. If you finish the materials provided before the study is concluded, start the packet over.

8. Turn in your practice work and the practice materials to your instructor.
The war against inflation has been fought partially at the expense of beginning farmers, says William Dobson, who just finished a year-long stint on the Council of Economic Advisers. Farmers will have to fight back as best they can, he says, by becoming more efficient and specializing more, but the next five years will be tough ones for American agriculture, Dobson says. One way to improve efficiency might be through the development of two-family farms in which one farmer specializes in grain and the other in the dairy side of the operation, Dobson said. "There are benefits to specialization in farming just as there are in other businesses, and it has the important side benefit of allowing the farmer to take a vacation once in awhile," he said in an interview. But the effect of innovations like two-family farms is likely to be dwarfed over the next several years by basic changes in the economics of farming, symptoms of which have become evident only in the last years or so, Dobson said. With commodity prices low, farmland values dropping, and interest rates high there is little farmers can do other than retrench, consolidate, regroup and improve their efficiency. It was an exciting time to be in Washington even though the market-oriented Council on Economic Advisors was often the losing side in the administration's policy tussles. "The gains that have been made against inflation, in my opinion, are really monumental," he said, describing himself as optimistic, but not euphoric, at the recent improvements in the stock market and interest rates. The Buffalo Courier-Express will cease publication in less than two weeks unless a buyer can be found for the morning newspaper. The shutdown would leave the city with one newspaper, the Buffalo Evening News. Parkinson announced the shutdown at a news conference at the Buffalo Hilton after employees were informed earlier in the day. "Today is a very sad day for Buffalo and for all of us," Parkinson said. "The paper will cease publication with the Sunday issue unless a purchaser can be found." Parkinson said a shutdown on the paper would mean the loss of jobs. Cowles said the company
has had "conversations with the Evening News" going back almost to the time of our purchase of the Courier-Express. "As is evident, they resulted in no resolution. We did not find the conversations at all encouraging." Two months ago reports circulated through the news industry here that the Courier and the Evening News were talking about merging. Arab leaders conferred in strict secrecy Tuesday at a summit meeting convened to define a possible Arab peace strategy for the first time since the creation of the state of Israel. The sources gave no indication of the subjects discussed, but pointed out that the Israeli invasion of Lebanon and its aftermath took top place on the published summit agenda. Lebanon has asked the summit to demand that all foreign forces should evacuate all Lebanese territory without delay. It was clear, however, that the most important discussions will center on two Arab peace plans that envisage a general Arab recognition of Israel and a third plan put forward by President Reagan proposing creation of an autonomous Palestinian "domestic authority" in association with Jordan. The United Auto Workers union hopes to come up with a national program to curb absenteeism of the hourly workers at Chrysler Corporation by the expiration of its current contract, a UAW official says. The UA Workers official declined to elaborate on what the national program might entail, but said the union has talked about levying eco-
onomic penalties against Chrysler workers with chronic absenteeism rates. "There used to be a saying that you shouldn't buy a car made on a Monday or Friday because absenteeism was so bad then," Stepp said. "We want to kill that image. We don't want people to think that absenteeism will affect the quality of a Chrysler product." Chrysler negotiators have said they hope to tie such fringe benefits as holiday and vacation pay and health insurance coverage to attendance. Stepp said the union has yet to reach an agreement with the No. 3 U.S. automaker on absenteeism. The voice telling jokes and reporting the weather last week on WDVE-FM sounded a little like a disc jockey with a cold. It was actually a computer
that generates speech from a text. The machine, dubbed "Hal" after the thinking computer in the film "2001" made its first public appearance with disc jockeys Jimmy Roach and Steve Hansen, promoting records for morning commuters. "This is the world debut. This is a brand new product," said Ron Cole, a research scientist at Carnegie-Mellon University who works with speech recognition by computer and helped run Hal. Its nasal voice was described as sounding like Lawrence Welk, a man with a heavy cold, a French Canadian hockey player, or a man with a Swedish accent. But Cole and station engineer Gary Marince were pleased. "I don't think it taxed the listener. There was enough of a buildup for them to pay close attention when the computer talked," said Marince. One person called the station to ask if he could get a similar computer to help a paralyzed friend. He was put in touch with its developer.

To make it work, someone types a sequence of words on the keyboard and sends them to a computer board which converts the string of characters into speech and produces a human-like voice. The computer is programmed with phonemes, the basic units of speech that distinguish one utterance from another in a language. It strings these phonemes together to make words and sentences. The fashions American men will be wearing this fall reflect nostalgia for those old enough to remember "the good old days" and the strong basic appeal of hand-styled apparel for a whole new generation. Stripes are once again the leading patterns and here, too, in many cases the stripes are more colorful than in the past. It is not unusual to find stripes of two or three colors on a single ground shade. The stylings of the stripes extend from hairlines to chalk stripes and include pin, pencil broken, and beaded stripes. Double-breasted suits will show a marked increase in popularity. The most popular style continues to be the two-button, single-breasted, but there is a slight re-vival of smooth finished sharkskins, cheviots, saxonies, and, of course, flannels. With white collars on colored and patterned shirts, a strong trend to new colors and revival of
silk shirts that reflect the 1920's, there is plenty of fashion news in shirts. The white collar syndrome is just about as strong in the conservative traditional shirts as it is in the fashion area, providing a look of elegance without being an overstatement. Patterns, including stripes and to a lesser extent checks and plaids, will be exceptionally strong.

In keeping with the fall season, the solid colored shirtings are a tone or two deeper than those worn in the spring season. When your old furnace clicks on for the first time this fall, chances are someone in your home will soon complain about dry skin problems, your plants might wither and die; and you'll notice plastered walls will crack, doors will stick, paneling will buckle, furniture will become unglued, and static electricity will crackle from rugs and upholstery. The likely problem is low humidity. Humidification, the process of adding moisture to the air, is extremely important in colder climates. According to home economist, Janet K. Felmeth, a non-humidified home in the north has a lower level of humidity than the Sahara Desert. But apart from personal discomfort and other problems, she said, there's another reason for considering a humidifier for your home. "The utilities and our government agencies are asking us to lower the settings of our thermostats during the heating season. Because the proper level of humidity makes you feel more comfortable at a lower temperature, you can set your thermostat about two degrees lower." Ms. Felmeth explained. "Tests show that the rotating drum-type system is the most efficient and the least costly to maintain," Ms. Felmeth continued. "The main parts of a rotating, drum-shaped cylinder with a thick filter belt mounted on the outer surface. The drum, mounted on two pulleys away from the highly humid areas of the system, rotates through the water, driven by a powerful motor. Since there are few moving parts, this system is virtually trouble-free. Americans like to complain about the complexity of figuring how much federal income tax they owe. But are they willing to pay more tax to get a simplified return that would fit on a post-
The question will be raised this week as the Senate Finance Committee opens hearings on proposals to radically change the system by eliminating deductions and substituting a "flat tax" in which most people would pay the same percentage of their income to the government. Despite a flurry of Congressional interest, and polls showing taxpayers favor the concept, there now seems little chance such a system will be enacted in the foreseeable future. The chief reason: it would mean higher taxes for middle- and lower-income families. One reason a "flat tax" is not universally popular is that the greater simplicity offers almost nothing for the 69 percent of individuals who do not itemize deductions. Most of the complexity in the current system involves itemized deductions and non-wage income. The flat tax that has drawn most attention was devised by Robert E. Hall and Alvin Rabushka of Stanford University. The simplicity of the system would permit a taxpayer to file a return on a form the size of a postcard.

Fresh asparagus is available for such a short time that we need to enjoy it while we can. It's been in supermarkets for awhile and just now is starting to appear in area gardens, so it's an ideal time to try some new asparagus recipes. Many people forget that asparagus, served cold, makes a delightful salad. Tender tip ends of asparagus cook faster than stem ends; so for more even cooking, cut tip ends slightly longer than stem ends. Whether you use today's recipes or others for microwaving asparagus, remember timings are only guides. Timings vary according to sizes and initial temperatures of the asparagus. Thin spears need a very short cooking time. For example: a pound of thin asparagus, trimmed and sliced, microwaves to a tender-crisp texture in as little as 21/2 minutes. If the spring thaw all seems to be thawing into your basement, you're not alone. Many homeowners are in the same leaky boat. Since many homes sit on what was once marsh, wet basements are common. Condensation occurs in basements during hot summers. Humid air enters the house, then condenses. It is time to prepare for the summer months--call us today!
APPENDIX B

LEFT-HAND/RIGHT-HAND PRACTICE--E
FOR ONE RIGHT TO ONE LEFT

DIRECTIONS:

1. DO NOT TYPE practice lines until your instructor tells you to do so.

2. In the upper right hand corner, label your color-coordinated practice paper as follows:
 School/Teacher
 Class time
 Your name (last name first)
 LHRH--E
 Date

4. Type lines as written. Do not type line numbers. Do not correct errors.

5. Type at a rate that is slightly faster than is comfortable. Use both sides of the practice paper if necessary.

6. When the five minutes of practice is completed:
 1) count the number of completed lines typed and write the number at the top of your practice paper next to the date.
 2) mark the practice line that you will start with the next day by circling the line number with a pencil.

7. If you finish the materials provided before the study is concluded, start the packet over.

8. Turn in your practice work and the practice materials to your instructor.
1. As at be we ace bad cab dad err fad err fad gad rag sac tab
2. Kink lily milk nook only pill upon yolk honk join limp mill
3. Aft bag car dew ear gag rat set tag vex wag age bar cat eve
4. Hip ill joy kin lip mop nip oil pin you hop imp lop mum nun
5. Acre best case date ease fact gave rate save tact vase were
6. Ink mom non pop hun inn nil pun him pip pup Jon pin kin Jim
7. Far Eva sag gas tax web axe beg bat gat sea tea are wed bet
8. Noon pink oily hook kiln lion noun mink plum polk loop jump
9. Egg get fee was saw tee Eve ate awe ebb few see wee awe sat
10. My up on in him you ill hum oil ilk joy mop pop pin ink ply
11. Cafe babe draw east face gear race safe tare vast west area
12. Hop mum imp num kin yon pip ill lip kin pop yon ohm hip pin
13. Fade gage raft edge dare scab veer tart Arab wade barb card
14. Holy loom punk luny Lyon puny loll polo Lynn kill lily John
15. Fare garb rage scar tear verb wage bard cave data fast gate
16. Milky onion phony nylon Polly Holly imply kinky limpy pupil
17. Aware barge cadet extra farce great saber trade verse water
18. Union mummy plump unpin opium polio holly phony loopy milky
19. Affect Caesar facade secede target vacate defect garage add
20. Poplin unholy uphill limply phylon pipkin pompom Kokomo moan
21. Garter vertex tatter settee Warsaw accede batter Carter gab
22. Million minimum nonunion limpily monopoly polonium homonym
23. Deserve stagger address cascade abstract barrage traverse
24. Mini Honolulu pumpkin unhilly lollipop polyphony Phillip hook
25. Watts baste dwarf facet screw waste eaves grade after carve
26. Lon pup him nil hun pop mom non ink lin mop nip imp Top
27. Sear test ware base cart fate gaze rave ward text vest awed
28. Opium hilly plump junky nippy onion nylon phony lymph unpin
29. Sad far see tax bet bat get sea ace fee rat ate wet cat date
30. Lily milk only pill upon limp mill noon kiln noun Phio polk
31. Axe bet aft ere get rat sad tee vet web see fee war was sat
32. Ill joy kin lip mop pun pup Lon mom ink hum Jim non you joy
33. Age dew ear fed red set tar wed arc few war aft far cad vet
34. John only yolk jolk hulk mill junk hill loop look hook July
35. Stag afar bear beef deer beet fret grab deed best rest brag
36. Noon pull hymn upon hoop punk pony hilly loin lion link noon
37. Add wad vat tab sac rag gad fad err fad err dad cab bad ace
38. Moon junk mill limp join honk yolk upon pill only nook milk
39. Gab aft eve fag cat bar age wag vex tag set rat gag dew ear
40. Hum ply ohm nun mum lop imp hop you pin oil nip mop lip kin
41. Aged zest were vase tact save rate gave fact ease date case
42. Mum oil Jim lip kin pin Jon pup pip him pun nil inn hum ohm
43. Brass taste carve after grade eaves waste screw facet dwarf
44. Johnny unhook Kokonon pompom pipkin phylon limpy uphill Kip
45. Seats dead awed vest text ward rave gaze fate cart base bed
46. Kinky poplin Phillip polyphony lollipop unhilly pumpkin mini
47. Tax fax fed sat awe wee see few ebb awe ate Eve tee was fee
48. Milk kink John iily kill Lynn polo loll puny Lyon luny punk
49. Extra aware traverse barrage abstract cascade address stagger
50. Hop lymph milky loopy phony holly polio opium unpin plump
51. Egress badger garage defeat vacate target secede facade fax
52. Puppy nippy oil minion hominy up mom Jill Holio minimum pop
53. Water agree refer great waste tease feast trade treat cadet
54. Nymph million oily Jim Kuolou holly yippy monopoly lin join
55. Tweezers braggart stedfast deferred westward decrease federate
56. Mimi lily lumpy unholy opinion knoll pumpkin mom pop loopy
57. Addressee stewardess statecraft assessed beverage vegetate
58. Hip kink imply pippin million polyphony ill jump junky onion
59. Ate safe saber defeat address reassert fate rest water aware
60. Kiln Jon Jill Myny Yillip pupil uphill unkill pinion kimono
61. Are age axe bet bag bad cat car cab dew dad ere ear err fad
62. Joy Jim Jon Kuy poi pup pip pun poll pill pull pin lip
63. Rat red rag sad set sac tab tar ree vet web wed wad bed arc
64. My up on in on in up joy poi limp junk jump lump mum nun imp
65. At Ed be we tree treat great vet set after dress feast geese
66. Only him pull my on no you upon million you look monk hulk
67. Sweater taffeta abreast Barbara cadaver Rebecca arrears wax
68. Lollipop mull opinion hominy ilk Polly nymph lily pulpy mink
69. Desecrate crevasse sassafras afterward effervesce retrace sew
70. Lill Jyopin in on pinky hull moll punk you hooky pool non oil
71. Bert Gredaw vet waxer dazed brace freed fewer evade taste art
72. Jillion polin loon polyphony minikin nonunion pompom plump
109. Draft creed feat craw assessed vex dew rest ebb farce freed
110. Mump Olly mini milky hill opinion unkill lo kiln Myni pipkin
111. East far sag gear draw vest grew seed tree wart abet tag var
112. Link kink noon link lion loin hilly pony punk hoop upon hymn
113. Aware crew brag rest best deed grab fret beet deer beef bear
114. Phony pink July hook look hoop hill junk mill hulk jolk yolk
115. Cat are awx vet cad far aft war few arc wed tar set red fed
116. Kip poi nil joy you non Jim hum ink mom Lon pup pun mop lip
117. Gad wad bed sat was war fee see web vet tee sad rat get ere
118. Yummy nymph mink pulpy lollipop Molly ilk hominy opinion null
119. Facet scatter retrace effervesce afterward sassafras desecrate
120. Homonym yolk plump pompon nonunion minikin polyphony loon pill
121. Adverse waxweed arrears Rebecca cadaver Barbara abreast treat
122. In pony hook hulk monk look you million upon you no on my pull
123. Axes tweed geese feast dress after set vet great treat tree
124. Him limply imp nun mum lump jump junk limp poi joy up in on
125. Gad far fed fad err ear ere dad dew cab car cat bad bag bet
126. Lo ohm non kimono pinion unkill uphill pupil Yillip moon Jill
127. Affect Caesar facade secede target vacate defeat garage bad
128. Hunk join kin loin yippy monopoly holly Jim Huolou oily mom
129. Fat egg get fee was tee Eve awe ate ebb few see wee awe sat
130. Johnny unhook Kokomo pompom pipkin phylon limly uphill unholy
131. Add vat wad tab rag sac gad fad err fad dad err cab bad ace
132. Kip mum oil lip Jim Noun mink polk loop nook ump Koliopu
133. Aged zest were vase tact save rate gave fact ease date case
134. You kip hip kink pool hoop Ohio noon ilium plump upon imply
135. Bread aster rebate garter estate degree barber feeder regarded
136. Jil unkill mop lip lumpkin mom-pop pop-up lymph polio opium
137. Decade detract free tread rater teeter bearer revert street
138. Milky Moonion pup John hill kill opium lily Lynn loll loom
139. Grease gadget wedded seesaw dread stress dews Best West bread
140. Million imply jumpy kinky holly ion Mohjoip ump you unpin nip
141. Tax saber farce extra fare rage tear verb wage wet was are war
142. Kink lily lion noun ion polo puny onion polyphony July pink
143. Abstract rat fave rate tact were aged cascade fate ear test
144. Kin Johnny Jim jump lumpily pill look pin-up hippy non mommy
145. East zest tax few are fret deed aware cafe babe scar barter
146. Ink imp lump mummy Jon hominy Loopilio join pup Kopilio ill
147. Be exaggerate carve waste facet sweater watts best as ear east
148. Holly hippy jumpy pool poll Jill Jiku nook hook unpin pumpkin
149. Bass greed afar czar strata defer was excess bazaar garage
150. Phillip mink Honolulu yon ion unholy Phiolio joy him ill plump
151. Sweet seed swear egress faze bat ace rat afar best fret deer
152. Aft bag car ear dew ease fast traverse westward water farce
153. Hunk kin join nymph ohm ink Jillion nun joy hippy kimono mum
154. Rat red Barbara baggage affect adverse beggar east reassert
155. Holy loom yippy Jim Jolopoloup poll oil you moll hull pinky
156. Eve trade reward beverage stewardess aft fag bar wag tag rat
157. Hun Kimmy holoyoki unkill limono pumpkin opinion unholy nook
158. Rebecca afterward retrace crevasse dazed red target facade
159. Junky junk polyp homonym luny link poppy pump inn nip yon hop
160. Garter tatter accede barrage dead seats few deed rest wag bag
161. Polonium jolly honky join mill moon ink hominy pony ill unpin
162. Stab afar deer cadet great verse water vase zest aged baste
163. Monopoly polyp join Kiliopolu noon jump Hopi kinkily opium
164. Tweed sad we afterward fewer brace waxer zebra desecrate tea
165. Jillion nonunion yolk homonym polio lily milky lollipop pop
166. Veer tart raft edge dare sweet state staff sever wrest crave
167. Polloi kin poplin Piku nippy only kill look monk mummy puppy
168. East far beggar best deed red stage serge aster dead rat rage
APPENDIX C

LEFT-HAND/RIGHT-HAND PRACTICE--P
FOR THREE RIGHT TO ONE LEFT

DIRECTIONS:

1. DO NOT TYPE practice lines until your instructor tells you to do so.

2. In the upper right hand corner, label your color-coordinated practice paper as follows:
 School/Teacher
 Class time
 Your name (last name first)
 LHRH--P (3 RIGHT - 1 LEFT)
 Date

4. Type lines as written. Do not type line numbers. Do not correct errors.

5. Type at a rate that is slightly faster than is comfortable. Use both sides of the practice paper if necessary.

6. When the five minutes of practice is completed:
 1) count the number of completed lines typed and write the number at the top of your practice paper next to the date.
 2) mark the practice line that you will start with the next day by circling the line number with a pencil.

7. If you finish the materials provided before the study is concluded, start the packet over.

8. Turn in your practice work and the practice materials to your instructor.
Mump Olly mini milky hill opinion unkill lo kiln Myni pipkin
Link kink noon link lion loin hilly pony punk hoop upon hymn
Phony pink July hook look hoop hill junk mill hulk jolk yolk
Cat are awe vet cad far aft war few arc sed tar set red fed
Kip poi nil joy you non Jim hum ink mom Lon pup pun mop lip
Yummy nymph mink pulpy lollipop Molly ilk hominy opinion mull
Homonym yolk plump pompom nonunion minikin polyphony loon pill
Adverse waxweed arrears Rebecca cadaver Barbara abreast treat
In pony hook hulk monk look you million upon you no on my pull
Him limply imp nun mum lump jump junk limp poi joy up in on
Lo ohm non kimono pinion unkill uphill pupil Yillip moon Jill
Affect Ceasar facade secede target vacate defeat garage bad
Hunk join kin loin yippy monopoly holly Jim Huolou oily mom
Johnny unhook Kokomo pompom pipkin phylon limly uphill unholy
Kip mum oil lip Jim Noun mink polk loop nook loom ump Koliopu
Aged zest were vase tect rate gave fact ease date case
You kip hip kink pool hoop Ohio noon ilium plump upon imply
Jil unkill mop lip lumpkin mom-pop pop-up lymph polio opium
Milky Moonion pup John hill kill opium lily Lynn loll loom
Grease gadget wedded seesaw dread stress dews Best West bread
Million imply jumpy kinky holly ion Moinjoip ump you unpin nip
Kink lily lion noun ion polo puny onion polyphony July pink
Kin Johnny Jim jump lumpily pill look pin-up hippy non mommy
East zest tax few are fret deed aware cafe babe scar barter
Ink imp lump mummy Jon hominy Loopilio join pup Kopilio ill
Holly hippy jumpy pool poll Jill Jiku nook hook unpip pumpkin
Phillip mink Honolulu yon unholy Phiolio joy him ill plump
Sweet seed swear egress face bat ace rat afar best fret deer
Hunk kin join nymph ohm ink jillion nun joy hippy kimono mum
Holy loom yippy Jim Jolopoloup poll oil you moll hull pinky
Hun Kimmy holoyoki unkill limono pumpkin opinion unholy nook
Rebecca afterward retrace crevasse dazed red target facade
Junky junk polyp homonym lundy link poppy pump inn nip yon hop
Polonium jolly honky join mill moon ink hominy pony ill unpin
Monopoly polyp join Kiliopolu noon jump Hopi kinkily opium
Tweed sad we afterward fewer brace waxer zebra desecrate tea
111. Jillion nonunion yolk homonym polio lily milky lollipop pop
110. Polloi Kin poplin Piku nippy only kill look monk mummy puppy
111. Mill limp join honk yolk upon pill only nook milk lily kink

112. Aft bag car dew ear gag rat set tag vex wag age bar cat eve
113. Nun mum lop imp hop you pin oil nip mop kip kin joy ill hip
114. Jim kin pin Jon pup pip him pun nil inn hun pop non mom ink

115. Jump loop polk plum mink noun lion kiln hook oily pink noon
116. Egg get fee was saw tee Eve ate awe ebb few see wee awe sat
117. Ply ink pin pop mop joy ilk oil hum ill you him in on up my

118. Pin hip ohm yon pop kin lip ill pip non kin num imp mum hop
119. John lily kill Lynn polo loll puny Lyon luny punk loom holy
120. Fare garb rage scar tear verb wage bard cave data fast gate

121. Pupil limpy kinkly imply Holly Polly nylon phonny onion milky
122. Milky loopy phony holly polio opium unpin plump mummy union
123. Mom Kikomo pom pom pipkin phylon limply uphill unholy poplin

124. Garter vertex tatter settee Warsaw accede batter Carter gab
125. Homonym polonium monopoly limply nonunion minimum million
126. Hook Phillip polyphony lollipop unhilly pumpkin Honolulu mini

127. Lop imp nip mop lip kin ink non mom pop hun nil him pup lon
128. Sear test ware base cart fate gaze rave ward text vest awed
129. Unpin lump phony nylon onion nippy junky plump hilly opium

130. Polk Phio noun kiln noon mill limp upon pill only milk lily
131. Joy you non Jim hum ink mon Lon pup pun mop lip kin joy ill
132. Age dew ear fed red set tar wed arc few war aft far cad vet

133. July hook look loop hill junk mill hulk jolk yolk only John
134. Noon link lion loin hilly pony punk hoop upon hymn pull noon
135. Milk nook only pill pun yolk honk join limp mill junk moon

136. Gab aft eve fag cat bar age wag vex tag set rat gag dew ear
137. Kin tip mop nip oil pin you hop imp lop mum nun ohm ply hum
138. Ohm hun inn nil pun him pip pup Jon pin kin lip Jim oil mum

139. Kip uphill limpy phylon pipkin pom pom Kokonon unhook Johnny
140. Seats dead awed vest text ward rave gaze fate cart base bed
141. Mini pumpkin unhilly lollipop polyphony Phillip poplin kinky

142. Punk luny Lynn puny loll polo Lynn kill lily John kink milk
143. Junk plump unpin opium polio holly phony loopy milky lump hop
144. Egress badger garage defeat vacate target secede facade fax
145. Pop minimum Holio Jill mom up hominy minion oil nippy puppy
146. Join lin monopoly yippy holly Kuolou Jim oily million nymph
147. Loopy mom-pop pumpkin knoll opinion unholy lumpy lily mimi

148. Addressee stewardess statecraft assessed bevarage vegetate
149. Onion junky jump ill polyphony million pippin imply kink hip
150. Kimono pinion unkill uphill pupil Yillip Myni Jill Jon kiln

151. Lip pin pull pill poll pun pip pup poi Kuy kin Jon Jim Joy
152. Rat red rag sad set sac tab tar tree vet web wed wad bed arc
153. Imp nun mum lump jump junk limp poi joy up in on in on up my

154. Hulk monk look you million upon you no on my pull him only
155. Mink pulpy lily nymph Polly ilk hominy opinion mull lollipop
156. Sew retrace effervesce afterward sassafras crevasse desecrate

157. Oil non pool hooky you punk moll hull pinky on in Jyopin Lill
158. Plump pompom nonunion minikin polyphony loon polin jillion
159. Hymn kink pool hoop noon Ohio ilium upon plump imply polyp

160. Baggage regarded feeder barber degree estate garter rebate
161. Hilly junk ill kip milky Miupy inpull Yukon ink Hopi up my
162. Nil ion unhook Kim holly optium noon lily Phillip Lyon loopy

163. Him only lily pup kin uphill mom pool polio Holonui Kuu unholy
164. Excess dress crate award baste eaves trade tear rage career
165. Kopopolou Jimmy pumpkin unpin oil John loom puny honk lymph

166. Joy imp Mïk Johnny ilio phono nilly lump him jolly poi molly
167. Mill limp join honk yolk upon pill only nook milk lily kink
168. Weed breed create degree tweezers reef stab afar bear brew
Students within each classroom have been randomly assigned to three practice groups: PROSE, LHRH-E, LHRH-P.

PROSE (Ordinary Prose). Students will practice for five minutes per day on a packet of twelve-word prose lines. The copy contains no special features or combinations of words.

LHRH-E (left-hand/Right-hand Equal). Students will practice for five minutes per day on a packet of twelve-word left-hand/right-hand lines. The copy on each page of the packet is arranged with alternating lines of left-hand and right-hand words.

LHRH-P (Left-hand/Right-hand Prescribed). Students will practice for five minutes per day on a packet of twelve-word left-hand/right-hand lines. The students in this group will practice different amounts of left-hand and right-hand lines depending on individual hand weaknesses diagnosed on the pretest.

Packets have been duplicated using three different colors: PROSE--blue; LHRH-E--buff; LHRH-P--canary. Each student will receive an individualized packet. Students will be provided colored practice paper corresponding to packet colors. Packets contain practice directions.

Conducting the Practice

1. On the first day of practice, October 27, give students the individualized packets and a sheet of matching colored practice paper. Make them aware that the types of practice are different, but that all three are customarily used in classes.

2. Explain the practice instructions included on the first page of the packet—in detail. Answer any questions.

3. Explain to students that you will start the 5 minutes of practice with a 3, 2, 1 countdown and that they are to start typing on "1". They are to continue until you say STOP.

4. Time for exactly five minutes using a stopwatch; call STOP.

5. After you have called STOP:
 1. Ask students to count completed lines typed and write that
number at the top of their practice paper next to the date.

2. Have students check the heading at the top of their practice papers to make sure all information is included.

3. Have students circle the line on the packet that they will start with at the next practice session.

6. Collect all student typescripts and packets. It is important that students use the packets during the five minutes of practice only.

Instruct students to pick up packets and appropriate paper at the beginning of the next class period and to label the practice paper according to packet directions. However, remind them they are not to begin typing until you start the countdown.

7. Place student typescripts in the appropriate folder (paper-clip each day's work). Separate folders have been provided for each week's practice.
Another important research finding about learning to type is that there is no tendency for speed and accuracy to go together. Typists at all levels of accuracy may be found at all levels of speed. This means that the two aspects of performance are based on different underlying factors. Therefore, it is not possible to practice toward both objectives at the same time.

The skill building program in this book is based on the research findings. You practice for speed until you have attained a substantial gain—with little regard for errors. Then you change to accuracy practice at a slower speed. If you have practiced with understanding and with high motivation toward gaining skill, your test performance at an unhurried rate will have an acceptable level of accuracy and be faster than it was before.
It is clear that the ease of making the motions required to type a letter combination mostly determines the sequences that can be easily chained, to wit: those motions that can be brought sufficiently close together in time. When a series of motions is made rapidly, the muscular sensations that arise from one motion trigger off the next one. An instance is walking: The sensations in one leg as you complete a step trigger off the movement of the other leg. This and thousands of other skilled movements are done as chained responses, without awareness of the separate motions that make up the series. Indeed, a response chain is defined as one based on muscular sensations--on the kinesthetic cues.

Because the chained responses that characterize high skill result from reduced time intervals between motions, much practice ought to be done at fast rates. Accuracy practice should be done separately, at a slower rate.
Handed timings
(one-minute)

Timing 1
waste dew vase aged ceded aft zest card dwarf facet bag were
was save vexes ebb tact rate carve ease after taste feed tax
best edge added babe dread draw aster gab few case brass fed

Timing 2
kink hip union look joy mummy milk nook unpinned molly mink kin
hoop pulp junky mop polio pill nip holly hoop oil yolk phony
yukon join milky you limp mill pump pupil lymph pin honk hop

Timing 3
wear trade scar set verb defer rat great gag farce save rate
vex aware acre bade raft wag cadet beet age extra barge stag
bare saver fate cat test watts eve gaze tease tag water deed

Timing 4
ink hilly junk moon nippy loin onion lip nylon polk mom hulk
imp poppy pull lump loom plump polo pup yummy non lolly kill
puny hum polly kip limp lymph nil jolly pull mink honk phony

Timing 5
ware greed cafe arc serge cage stab waver sax awe afar dress
get bear egg deer tweed gas fret react zebra wade brag adage
crew staff bed area brace wad garb web dazed tree axed freed
Handed timings, continued

Timing 6

ohm lion imply kip noun pylon poi knoll noun mill jumpy plum
kiln pun loony pool yum jolly lou link pony lump h join puppy
opium him punk molly yip john hymn lumpy poll pink ilk polyp
APPENDIX F

TESTING PROCEDURES

The findings and conclusions of this research study will be drawn from the data collected in your classrooms. Data gathering procedures are therefore the critical element in the study. The uniform testing procedures will help to gather consistent and reliable pretest and posttest scores.

PRIOR TO CLASS MEETING

1. Check typewriters to make sure they are in good working order.

2. Write the following three items on the blackboard:

 Item 1: Paper Heading
 Write example for your school and class on the board:

 Your school: Anytown High
 Teacher name: Mrs. Jones
 Class time: 8:35
 Student name: Jackson, Marjorie
 PRETEST (or POSTTEST): PRETEST

 Item 2: Testing Order

 3' Straight-copy #1
 3' Straight-copy #2
 Series of 6 one-minute timings
 Left-hand
 Right-hand
 Left-hand
 Right-hand
 Left-hand
 Right-hand

 Item 3: Machine Settings

 3' timings = Double space
 1' Timings = Single space
 12 and 90 margins
 20 and 85 margins
 (70 space line)
 (60 space line)
 5-space tab
WHEN CLASS BEGINS

1. Give each student three sheets of blank white paper.

2. Instruct them to type the following information in the upper right-hand corner of each sheet following the example on the blackboard:

 High School
 Teacher
 Class (time class starts)
 Student name (last name first)
 PRETEST (or posttest)

3. Explain to students that they will be doing a total of 12 minutes of timed writings of the following type and in the following order using the three sheets of paper indicated. Concentration and attention to test directions is important in order to complete the testing in the allocated time.

 Straight-copy three-minute timing #1 (one sheet of paper)
 Straight-copy three-minute timing #2 (one sheet of paper)
 Series of six one-minute timings (one sheet of paper)
 Left-hand
 Right-hand
 Left-hand
 Right-hand
 Left-hand
 Right-hand

4. Explain to students that they should type at a comfortable rate, say "type all timings at a comfortable rate, don't try to set a speed record nor slow down to a crawl in order to avoid errors--just type at a comfortable rate."

 Also explain how you will be starting and ending the timings. My suggestion is to use a 3, 2, 1, countdown and instruct students to begin typing on "1". They are to stop immediately when they hear you say STOP.
CONDUCTING THE THREE-MINUTE STRAIGHT-COPY TIMINGS

1. Explain to students that they will first do the two 3-minute timings and will need to use a separate piece of paper for each one and that they will have separate copy for each timing.

2. Give each student a copy of SC 3' #1 (straight copy), and SC 3' #2 (straight copy). (Folders 1 & 2)

3. Have them look over SC 3' #1 (straight-copy). Ask them to avoid writing on the test copy.

4. Tell them to insert a piece of prepared paper in the machine.

5. Have them type SC 3' #1 following the word PRETEST at the top of the page and then triple space.

6. Instruct them to prepare the typewriter as follows:
 - Set margins of 12 left and 90 right (70-space lines).
 - Set machine on double spacing.
 - Set tab for a 5-space paragraph indentation.

7. Instruct them to type the timing as it appears--not adjusting margins to reach the right margin, etc. Omit the headings at top of page and the scale numbers. If they finish the timing, they are to start it again. No erasing of errors.

8. Ask if everyone is ready to type SC 3' #1. Is paper labeled and copy ready? Have them check to see if they have the copy for #1. Tell them you are ready to begin the countdown, and they should type on "1" and continue until they hear the STOP signal.

9. Countdown and begin.

10. Time them by stopwatch for exactly three minutes. Do not move around the room while the timing is in progress.

11. Call STOP--ask them to remove the typescript from the typewriter and keep it until all testing is completed.

12. Collect copy for Timing #1, but have them retain what they typed.

13. Have them look over SC 3' #2.

14. Tell them to insert a piece of prepared paper in the machine.
15. Have them type SC 3' #2 following the word PRETEST at the top of the page and then triple space.

16. Tell them that the machine settings are the same for this timing as for #1. (12, 90; DS; tab).

17. Remind them to type the timing as it appears, (repeat 7).

18. Ask if everyone is ready to type SC 3' #2. Paper labeled and copy ready? Tell them you are ready to begin the countdown, and they should begin on "1" and stop when they hear STOP.

19. Countdown and begin. Time for exactly 3 minutes.

20. Call STOP--ask them to remove the typescript from the typewriter and keep it until all testing is completed.

21. Collect copy for Timing #2, but have them retain what they typed.

INSTRUCTIONS FOR SERIES OF ONE-MINUTE TIMINGS

1. Give students copies of test materials for the series. Ask them to look them over. Point out the order: we will alternate six one-minute timings between the left-hand and right-hand (timings 1-6).

2. Instruct them to insert the third piece of prepared paper in the machine and type 11 Timings next to the word PRETEST at the top of the page and then triple space.

3. Tell them that the one-minute timings are to be typed in single spacing with a double space between each timing.

Set the machine on single spacing.

Set margins of 20 and 85.

4. Tell them that for the first one-minute timing they will type Timing 1--type each line only once. If they should finish the lines in Timing 1 before one-minute is completed, do not go to Timing 2; repeat Timing 1. Do not type the headings, scale numbers at the right and do not correct errors.

5. Remind them that each timing will begin with a countdown and they are to start on "1" and stop when they hear STOP. Immediately following the STOP call they should "double down" in preparation for the next timing. Timings will progress rapidly. We will type Timing 1, double down and immediately type Timing 2, etc., through the 6 timings.
6. Say--"Ready for Timing 1, type Timing 1; 3, 2, 1."

7. Time for one-minute exactly and call "STOP", "double down."

8. Say--"ready for Timing 2, type Timing 2; 3, 2, 1." Go through all 6 timings. Students can use the back of the paper if they find it necessary.

9. Collect copy for one-minute timings, but have students retain what they typed.

10. Ask them to check each of the three pieces of paper to make sure the headings are complete and accurate. Have them arrange them in the following order--1' timings on top, followed by 3' SC #1, then 3' SC #2. Have them bring them to you at the front of the room or walk around and collect them. Staple them as they are handed in.

11. Place all timing copy (three folders) and students typescripts (folder for each class) in the folders provided.