






before applying the boosting technique.

Figure 3.5: Training a strong classifier by combining weak learners (WL) with the
help of supervised machine learning algorithm. The number of test-escapes (TE)
and over-kills (OK) is reduced after appropriate sampling of the data and boosting
of the weak learners .

The trained strong classifier is used to bin new copies of the circuit. Based on the

signature of a circuit, the classifier outputs a result whether an instance is pass or

fail. The following figure shows the entire strategy for testing analog circuits as

proposed in this work.
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Figure 3.6: The figure shows the complete strategy to evaluate the proposed im-
plicit functional testing for analog circuits. The constructed signature is used to
train a strong classifier. The trained classifier uses subsets of signature to bin
copies of the circuits as pass or fail.
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Chapter 4

Results for evaluating IFT using Monte Carlo data

This chapter is organized in two main sections. The first section describes the

infrastructure for constructing the signature. The second section demonstrates

the results obtained by training the classifier with the constructed signature.

4.1 Infrastructure for constructing signature

This section is organized in four subsections. The first subsection describes the

Circuit Under Test (CUT) designed to demonstrate the results for the proposed

strategy. Subsection 2 explains the synthetic process variation done using Monte

Carlo simulation. Subsection 3 describes the input test patterns generated by the

waveform generator. The construction of the signature is described in the last

subsection.

4.1.1 Circuit Under Test (CUT)

The Circuit Under Test (CUT) chosen for this work is an analog amplifier built

using an operational transconductance amplifier (OTA). The OTA is designed

in 90nm technology and is a common analog building block. The OTA has

nominal gain of 4 and bandwidth of 300 kHz at typical operating conditions

(Vdd=0.9V,27◦C). The data-sheet input operating range is 400mV- 600mV. Fig-

ure 4.1 shows the schematic of the OTA and Table 4.1 provides the dimensions of

the transistors in the OTA.
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Figure 4.1: The figure shows the schematic of the OTA designed in 90nm technol-
ogy. The input test pattern is applied to the inverting input VIN−.

Transistor Type Width (nanometer) Length (nanometer)

MP1 PMOS 1000 240

MP2 PMOS 1000 240

MP3 PMOS 1000 240

MN1 NMOS 1000 200

MN2 NMOS 1000 200

MN3 NMOS 90 200

MN4 NMOS 1000 200

MN5 NMOS 1000 200

Table 4.1: Transistor dimensions of the OTA

4.1.2 Synthetic Process Variation

The Monte Carlo method is used to simulate the manufacturing process variations

of the OTA. The synthetic process variation of the transistor model parameters in

the OTA is done using the compact modeling technique implemented by TSMC

as discussed in Chapter 2. The Monte Carlo method is used to generate 1500
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instances with the synthetic process variations. Each instance is indexed by four

Monte Carlo parameters: random1, random2, random3, random4. The four Monte

Carlo parameters are varied independently with Gaussian distribution having mean

(µ) equal to 0 and standard deviation (σ) equal to 0.5. Two random parameters

are then used to vary 18 device model parameters of the NMOS transistors and the

other two random parameters are used to vary 18 device model parameters of the

PMOS transistors. The Monte Carlo parameters vary the junction capacitances,

oxide thickness, threshold voltages, width and length of the transistors. The Monte

Carlo method is done using process variation only i.e. all the PMOS transistors

are varied in the same manner and all the NMOS transistors are varied in the same

manner to generate 1500 instances.

4.1.3 Waveform Generator

In order to test the CUT, the input test patterns are generated using a waveform

generator. The waveform generator comprises the input test pattern and a 10-bit

DAC designed in 90nm technology.
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Figure 4.2: Figure shows the waveform generator used to generate input test pat-
terns. The input test pattern consists of 1050 10-bit vectors. The vectors are
applied to the 10-bit DAC. The analog output of the DAC is fed as an input to
the OTA.

Digital to Analog Converter

The 10-bit digital to analog converter (DAC) is designed to enable application of

the input test patterns to the OTA. The DAC is a series of 10 ratio-ed inverters

designed in 90nm technology. Figure 4.3 shows the schematic of the 10-bit DAC.
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Figure 4.3: The figure shows the schematic of 10-bit DAC with Vdd=1.2 V, Gnd=0
V, R=25 Ω, C=100 nF. The minimum width transistor is 90nm.

The input to the DAC is a pattern of 1050 10-bit binary vectors. The analog

output of the DAC is fed as a test input to the OTA. As mentioned in Chapter 2,

there is no restriction for the test inputs in signature space, they can be functional

as well as non-functional. The main aim of non-functional test inputs is to drive

the circuit into stress so that potentially failing circuits can be detected. The DAC

is sized so that the analog output lies both inside and outside the input data-sheet

operating range of the OTA. Table 4.2 shows the range of decimal numbers for

generating functional and non-functional inputs.

Input Test Patterns

The waveform generator is used to generate three input test patterns - random,

square and triangle. Table 4.3 shows the decimal vectors provided to the DAC to

generate the desired input test patterns. As the name suggests, random input test

pattern is a number of decimal numbers selected at random between 0-1023. The
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Decimal numbers Input voltage to OTA Input type

0- 399 >600mV Non-functional

400-900 400-600mV Functional

901-1023 <400mV Non-functional

Table 4.2: There are 210 = 1024 possible input decimal numbers that be applied
to the DAC. The DAC is designed to generate input test patterns inside as well as
outside the data-sheet operating range of the OTA. The decimal numbers between
400 and 900 are the functional test inputs since the analog output of the DAC lies
within the data-sheet operating range of the OTA (400-600mV). The remaining
decimal numbers are the non-functional inputs for the OTA.

square input pattern is basically a square wave going from the lowest decimal (0)

to the highest decimal (1023). The triangle input pattern gradually increases from

100 to 1000 then decreases from 1000 to 100 in steps of 100. The vectors are then

repeated for the square and triangle inputs to get a 1050 long vector. There is no

such repetition for the random input pattern. All three input test patterns exceed

the data-sheet operating range of the OTA by ±50mV .

The sampling rate of the input test patterns is an important factor for testing

the circuit efficiently. The input test patterns applied to the OTA are sampled

with seven different sampling rates. The random input test pattern is sampled at

100kHz, 200kHz, 500kHz and 1Mhz. Sampling rates 500kHz and 1Mhz are outside

the 300kHz bandwidth of the OTA. Testing outside the bandwidth of the OTA

is done to drive the circuit in a stress condition. Square and triangle input test

patterns are sampled at 10kHz, 20kHz, 50kHz and 100kHz frequencies which are

well within the bandwidth of the OTA.
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Number of Input test pattern (decimal)
vectors Random Square Triangle

1 716 0 100

2 786 1023 200

3 447 0 300

4 683 1023 400

. . . .

9 20 0 900

10 802 1023 1000

11 1021 0 1000

. . . .

20 250 1023 100

. . . .

1050 300 0 100

Table 4.3: The table illustrates the three input test patterns generated by us-
ing functional as well as non-functional decimal numbers. The decimal numbers
between 400-900 lead to functional inputs and the remaining numbers lead to non-
functional input. The generated input patterns are inside as well as outside the
data-sheet operating range of the OTA. The vectors for square and triangle input
are repeated whereas there is no such repetition in random input.

Input SR1 SR2 SR3 SR4 SR5 SR6 SR7
test 10 20 50 100 200 500 1000

pattern kHz kHz kHz kHz kHz kHz kHz

Random X X X X
Square X X X X

Triangle X X X X

Table 4.4: The table describes different sampling rates for the input test patterns.
Each input pattern is sampled with four different sampling rates. The higher two
sampling rates for the random input test pattern drive the circuit outside the
operating bandwidth i.e 300 kHz. The square and triangle input test patterns
drives the circuit well within the operating bandwidth of the OTA.

The input test patterns generated by the DAC are applied to the OTA. Figure 4.4

shows the input test patterns in the time domain along with their FFT plots in

the frequency domain.
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Figure 4.4: The figure shows the input test patterns sampled at 100kHz in the
time and frequency domain at the input to the OTA as seen in Figure 4.2. All
the three input test patterns are driving the circuit outside the operating input
range (400-600mV)of the OTA. The FFT plots on the right side show that the
random input test pattern has the highest spectral content as compared to square
and triangle input pattern. The vertical dotted line shows the bandwidth of the
amplifier.

From the FFT plots, it is apparent that the random input pattern has more spectral

content than the square or triangle input patterns. The square input has a number

of harmonics whereas the triangle input is almost a pure signal. The spectral
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content rolls off at the same rate for all the three input patterns because of the

filtering effect of the DAC. The input test patterns have three distinctly different

spectral contents by which the OTA is tested.

The input patterns are applied to the OTA and the synthetic process variation of

the devices in the OTA is done using the Monte Carlo method. The response of

the OTA to the input test patterns and synthetic process variation is captured.

Figure 4.5: The figure shows the sampling of the input and the output for con-
structing the signature. The input is sampled at the output of the DAC and the
response of the OTA is sampled as the output.

The inputs and outputs are sampled at twice the frequency of the input to minimize

sampling error. The sampled output of the Monte Carlo instances is digitized using

the ideal 10-bit analog-to-digital converter.

4.1.4 Cross covariance as a signature

The cross covariance between sampled input and output for a range of offsets is the

signature. The number of samples captured for each instance is 2100 for input and
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2100 for output. The signature is computed for the 1500 instances. The length of

the cross-covariance vector is 4201 (2N+1 where N is 2100) for each instance. The

cross-covariance between the input and output is computed for the four sampling

rates at which each input is sampled. Each instance has an unique cross-covariance

vector of 4201*4= 16804. Figure 4.6 shows that the cross-covariance of square and

triangle is almost the same. The cross-covariance of random input and output is

different from the square and triangle.
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Figure 4.6: Input(top), output(middle) and cross-covariance(bottom) of a single
Monte Carlo instance of the OTA. Two clock periods are shown. The negative
values x-axis indicate the cross-covariance when the input is shifted left. The
positive values indicate the cross-covariance when the input is shifted right. The
cross-covariance of the actual input and output without any time shift is shown at
x=0.

Table 4.5 shows a schematic representation of the signature set for the 1500 Monte

Carlo instances. Each input pattern with the corresponding output of the Monte

Carlo instances leads to a set of signature. Signature comes from the bottom graph

of Figure 4.6. The signature is mapped to the performance bins. The performance
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will be discussed in the next section.

Signature Performance

Number Sampling Sampling Sampling Sampling
of rate 1 rate 2 rate 3 rate 4 Bin

instances (4201) (4201) (4201) (4201)

1 Pass
2 Cross-covariance Gain fail only
3 values Gbw fail only
.
.

1500 Both fail

Table 4.5: Cross covariance vector for 1500 Monte Carlo instances for a input
test pattern. Each instance has unique 16804 cross-covariance values for the four
sampled rates of the input pattern. The cross-covariance values are within the
range of -1 and 1. The last column shows the performance space bins to which the
signature is mapped.

4.1.5 Mapping performance parameters to the signature

After the signature is constructed, the mapping of the performance parameter to

the signature needs to be implemented to bin the instances. Testing the OTA in the

performance space is done by evaluating the frequency response of the Monte Carlo

instances to an ac input with magnitude equal to 1 and phase equal to 0 . The

mapping of the signature space to the performance space is done by binning the

Monte Carlo instances based on their two performance parameters- gain and gain-

bandwidth of the OTA. A single value limit is set for the performance parameters

that rendered a yield of 82% for the Monte Carlo instances.

Performance parameter Limits Set Nominal Units

Gain 3.881 3.8898 V/V

Gain-bandwidth 1.09e6 1.1486e6 Hz

Table 4.6: Single value limits set for the performance parameters.
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The gain and gain-bandwidth attributes of each instance is compared with the set

limits. The instance is binned into one of the following four bins depending on the

gain and gain-bandwidth values:

1. Pass (Gain pass and gain-bandwidth pass)

2. Gain fail only (Gain fail and gain-bandwidth pass)

3. Gain-bandwidth fail only (Gain pass and gain-bandwidth fail)

4. Both fail (Gain fail and gain-bandwidth fail)

The Monte Carlo instances are generated after the nominal circuit is simulated

with the synthetic process variations. The performance space scatter plot for the

nominal and the Monte Carlo instances is shown in Figure 4.7. The instances in

the last three bins are the fail instances. There is imbalance in the data with

the pass instances forming the majority population and the fail instances forming

the minority population. There is further imbalance in the fail bins with the gain

fail only forming the majority population and the gain-bandwidth fail forming the

minority population. The table shows the number of instances in each quadrant

of the scatter plot.
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Figure 4.7: The performance scatter plot of 1500 Monte Carlo instances. Each
instance has a corresponding gain and gain-bandwidth attribute associated to it.
The attributes for each instance is compared with the set limits. Depending on
the value of the gain and gain-bandwidth an instance is binned as either pass, gain
fail only, gain-bandwidth fail only or both fail.

Group Number of instances

Pass 1268

Gain fail only 164

Gain-bandwidth fail only 19

Both fail 49

Table 4.7: The grouping of the Monte Carlo instances based on the performance
parameters gain and gain-bandwidth. The first bin indicates the pass instances
and the last three bins indicate the fail instances.

Each instance in the signature space corresponds to an instance in the performance

space. The cross-covariance of each instance is mapped to the bin of the instance

in the performance space. The signature set is a cross-covariance vector values for

the Monte Carlo instances with the corresponding bin of the instances from the

performance space as shown in Table 4.5.
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4.2 Classifier training and testing

As mentioned in Chapter 3, the mapped signature is employed to train a strong

classifier using supervised machine learning algorithm. The Monte Carlo data has

a majority population group of pass instances and the minority population group of

the fail instances. The fail group has further imbalance with different populations

for the gain fail only, gain-bandwidth fail only and both fail groups.

Figure 4.8: There is imbalance in the population of pass and fail group and there
is further imbalance in the population of the fail group.

RUSBoost algorithm is used to appropriately sample the data before training to

take care of the imbalanced data. Random-Under-Sampling Boost (RUSBoost) al-

gorithm randomly removes instances from the majority group (pass group) till the

population of both the majority and the minority group is equal. After the appro-

priate sampling the boosting algorithm AdaBoost is applied. The strong classifier

is trained using the two algorithms. MATLAB statistics toolbox version R2014a

is used to train the strong classifier using RUSBoost and AdaBoost algorithms.

40



4.2.1 Classifier details

The mapped signature is provided as input to the classifier. Each strong classifier

is trained with 300 weak learners. Each weak learner selects a cross-covariance

value from the signature set as a cut-off to classify instance as pass or fail. All the

instances having their cross-covariance values less than the cut-off fall in one group

and the remaining instances fall in other group. The strong classifier is trained

with the majority vote of the weak learners. The depth of the classification tree

for each weak learner is restricted to a single level to reduce the time and memory

required for the training.

Figure 4.9: The figure shows the strong classifier. The strong classifier is trained by
combining 300 weak learners (WL). Each weak learner chooses a cross-covariance
value to classify instances as pass (P) or fail (F). All the instances having their
cross-covariance value less than a particular value (X) will fall in one group and the
remaining instances will fall in another group. The classifier uses a subset of the
signature to train the weak learners. After the training is completed, an instance
is binned as pass or fail depending on its signature and weighted majority votes of
the weak learners.

The classifiers are trained using different combinations of the groups in the dataset.

The data is randomly partitioned into a training set and testing set. 60% of the

data is used for training the classifier and the remaining 40% is used for testing
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the trained classifier. The table summarizes the various classifiers trained for this

thesis along with the size of the subset of the signature used. Since the proposed

IFT technique can be implemented in BIST circuitry, a small size of subset is

considered favorable because it reduces the cost and computation time for the

cross-covariance.

Classifier Using Using Using
name random signature square signature triangle signature

Pass-gain fail only 7 6 14

Pass-gbw fail only 28 41 15

Pass-both fail 7 4 2

Pass-all fails
combined 25 7 9

Pass,gain fail,
gbw fail, both fail 53 66 46

Table 4.8: The table shows the subsets of signature used by the trained classifiers.
The classifiers are trained with pass and individual fail groups, with pass and all
fail groups combined and multi-label classifiers with all four individual groups as
separate groups. Out of the entire size of the signature (16804), each classifier
selects subsets of the signature to train the weak learners.

4.2.2 Results table description

The results for the five classifiers are reported in two tables. The tables are orga-

nized in the following way:

� First table describes the performance of the trained classifier. The first two

columns describes the instances used for training and testing the classifiers.

The last three columns indicate the number of correctly and incorrectly

binned instances by the classifier trained with the three signatures. [Refer

4.9].

� Second table demonstrates the number of unique cross-covariances used by

the classifiers for training the weak learners. The first column shows the
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signature used by the trained classifier and the second column shows the

details of the subsets of the signature used from the different sampling rates.

[Refer 4.10].
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4.2.3 Pass-gain fail only classifier

Group of Instances Correctly binned/Incorrectly binned
instances Train/Test Random Square Triangle

Pass 761/507 506/1 504/3 504/3

Gain fail only 99/65 62/3 57/8 64/1

Total 860/572 568/4 561/11 568/4

Table 4.9: Pass-gain fail only classifier results.

Signature used by Number of unique
the classifier cross-covariances used

Random 7(4/SR4,1/SR5,SR6,SR7)

Square 6(2/SR1,SR2,SR3)

Triangle 14(6/SR1,7/SR2,1/SR3)

Table 4.10: Cross-covariances used by pass-gain fail only classifier.
4.2.4 Pass-gain-bandwidth fail only classifier

Group of Instances Correctly binned/Incorrectly binned
instances Train/Test Random Square Triangle

Pass 761/507 506/1 501/6 501/6

Gbw fail only 12/7 6/1 6/1 6/1

Total 773/514 512/2 507/7 507/7

Table 4.11: Pass-gain-bandwidth fail only classifier results.

Signature used by Number of unique
the classifier cross-covariances used

Random 28(16/SR4, 8/SR5, 3/SR6, 1/SR7)

Square 41(6/SR1, 9/SR2, 13/SR3,SR4)

Triangle 15(8/SR1, 1/SR2, 6/SR4)

Table 4.12: Cross-covariance used by pass-gain-bandwidth fail only classifier.
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4.2.5 Pass-both fail classifier

Group Instances Correctly binned/ Incorrectly binned
Train/Test Random Square Triangle

Pass 761/507 507/0 506/1 505/2

Both fail 30/19 19/0 18/1 19/0

Total 791/526 526/0 524/2 524/2

Table 4.13: Pass-both fail classifier results.

Signature used by Number of unique
the classifier cross-covariances used

Random 7(7/SR4)

Square 4(3/SR3, 1/SR4)

Triangle 2(2/SR1)

Table 4.14: Cross-covariance used by pass-both fail classifier.

XXXXXXXXXXXTesting
Classifiers

Correctly binned/Incorrectly binned

Random Square Triangle

With random signature 44/5 49/0 0/49

With square signature 0/49 30/19 0/49

With triangle signature 0/49 49/0 49/0

Table 4.15: The row indicates the signature of the both-fail instances provided as
testing instances. The column indicates the binning by the classifier trained with
different signatures.

XXXXXXXXXXXTesting
Classifiers

Correctly binned/Incorrectly binned

Random Square Triangle

With random signature 13/36 0/49 49/0

With square signature 49/0 5/45 49/0

With triangle signature 49/0 0/49 17/32

Table 4.16: Testing both fail instances on pass-gain-bandwidth fail only classifier.

The pass-gain fail only classifier trained with square signature correctly binned

the maximum number of both-fail instances. The classifier trained with random
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signature misclassified all the both fail instances having square and triangle sig-

nature. Similarly, the classifier trained with triangle signature misclassified all the

both fail instances having random and square signature.

The pass gain-bandwidth fail only classifier trained with random and triangle sig-

nature performed better in binning the both-fail instances correctly. Training

pass-gain fail only classifier with square signature is recommended for correctly

binning the both-fail instances. Training pass-gain-bandwidth fail only classifier

with random or triangle signature is recommended for correctly binning the both-

fail instances. Training such classifiers will eliminate the need to train a different

classifier for the both-fail instances.
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4.2.6 Summary of over-kill and test-escape for the trained classifiers

This section summarizes the over-kills and test-escapes produced by the above

three classifiers. The format of the table for over-kill and test-escape is the same.

The trained classifiers are tested with new unknown instances. Two cases: majority

vote and union case are considered for the DPPM calculation. The number of

misclassified instances out of the total number of testing instances is shown for

the two cases (Column 2 and Column 4 ). Majority vote indicates the number

of misclassified instances by at-least two signature sets whereas union indicates

misclassified instances by any one of the signature set. The Upper Confidence Limit

(UCL) DPPM for each case is calculated at 50% confidence interval (Column 3 and

Column 5). Figure 4.10 shows the misclassified instances by the trained classifiers

for the union case. Most of the misclassified instances are marginal instances which

indicate that the classifier found it difficult to determine the boundary for the bins.

Trained
classifier

Over-kill

Majority
vote

UCL
50% CI
DPPM

Union
UCL
50% CI
DPPM

Pass-gain fail 2/572 4,675 4/572 8,166

Pass-gbw fail 4/514 9,087 8/514 16,866

Pass-both fail 0/526 1,318 3/526 6,981

Table 4.17: The table summarizes the over-kills for the trained classifiers. The
majority vote indicates the best performance whereas the union case indicates the
worst performance estimate. The classifier result yields 1,318 DPPM for the best
case and 16,866 DPPM for the worst case.
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Trained
classifier

Test-Escape

Majority
vote

UCL
50% CI
DPPM

Union
UCL
50% CI
DPPM

Pass-gain fail 2/572 4,675 10/572 18,651

Pass-gbw fail 1/514 3,265 1/514 3,265

Pass-both fail 0/526 1,318 1/526 3,191

Table 4.18: The trained classifiers yielded similar number of test-escapes as the
over-kills with 1,318 DPPM for the best case and 18,651 DPPM for the worst case.

Figure 4.10: The figure shows the zoomed performance plot to highlight the mis-
classified instances by the trained classifiers. The misclassified instances are shown
for the union case. The classifier found it difficult to correctly bin the marginal
instances.
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4.2.7 Pass-all fails combined classifier

The three fails groups are combined together to form a fail group. A classifier is

trained with the pass and all-fails combined group.

Group of Instances Correctly binned/Incorrectly binned
instances Train/Test Random Square Triangle

Pass 760/508 502/6 502/6 505/3

All fails 140/92 83/9 76/16 83/9

Total 900/600 585/15 578/22 588/12

Table 4.19: Pass-all fails combined classifier results.

Signature used by Number of unique
the classifier cross-covariances used

Random 25(7/SR4, 6/SR5,SR6,SR7)

Square 7(1/SR1,SR2, 3/SR3, 2/SR4)

Triangle 9(4/SR1,SR2, 1 /SR3)

Table 4.20: Cross-covariance used by pass-all fails combined classifier.

Training classifier with all the separate individual groups is not at all recommended

as it yields high misclassification error and also requires high number of cross-

covariances.

4.2.8 Pass, gain fail only, gbw fail only, both fail classifier

Apart from the binary classifiers, multi-label classifiers are also trained by assigning

bins to all four groups. Each weak learner will bin the instances into two groups

as shown in Figure 4.11. The strong classifier is built with the majority vote of

the weak learners to bin instances into either of the four groups.
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Figure 4.11: The weak learners in multilabel classifiers are binary classifiers. A
weak learner bin all the instances into gain fail and pass group. Another weak
learner bins all the instances into both-fail and gbw fail group. The final output of
the multi-label strong classifier is the weighted majority vote of the weak learners.

Group of Instances Correctly binned/Incorrectly binned
instances Train/Test Random Square Triangle

Pass 761/507 469/38 402/105 423/84

Gain fail only 98/66 55/11 59/7 53/13

Gbw fail only 11/8 7/1 8/0 8/0

Both fail 30/19 19/0 18/1 19/0

Total 900/600 550/50 487/113 503/97

Table 4.21: The misclassification error by using square signature is the highest.
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Signature used by Number of unique
the classifier cross-covariances used

Random 53(53/SR4)

Square 66(17/SR1, 24/SR2, 13/SR3, 12/SR4)

Triangle 46(35/SR1, 5/SR2,SR3, 1/SR4)

Table 4.22: The classifier trained with square signature used the highest number
of cross-covariances as compared to random and triangle signature. The classifier
trained with all the signatures used the subset from the lower sampling rates (SR1-
SR4).

The training of classifier with multi-labels yielded poor results with high misclas-

sification error. The number of cross-covariances used by the classifier is more as

compared to other trained classifiers.

4.3 Effect of ideal input sampling on classifiers

As mentioned in section 4.1, the input is sampled at the output of the DAC. The

previous sections did not consider the effect of the noise created by the DAC on

the classifiers. There are four possible ways for sampling the input and output.

This section demonstrates results for sampling the digital input-digital output.

The digital input is the the ideal input instead of the noisy analog input. The

ideal input is sampled at the input of the DAC as was originally implemented

by Cheng [5]. The random input test pattern is considered for evaluation of the

experiment. The cross-covariance of ideal random input and output and the cross-

covariance of noisy random input and output is computed. The effect of the noisy

input and ideal input on the classifiers is studied by training classifiers using the

noisy and ideal signature. Pass and all-fail combined classifier is trained using the

noisy and ideal signatures. The best performance (random signature) for the worst

possible situation (pass-all fail combined classifier) is considered to evaluate this

experiment.
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Figure 4.12: The ideal input is sampled at the input of the DAC. The sampled
output is the same for the ideal and noisy input.

The figure shows the ideal and noisy random input in time and frequency domain.

The noisy and ideal input are almost identical except for a minor difference in the

FFT spectrum at higher frequencies.
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Figure 4.13: The ideal and noisy input in time domain and the corresponding FFT
of the inputs. The ideal input is sampled at the input of the DAC and the noisy
input is sampled at the output of the DAC.

The classifiers are trained with pass and all fails combined instances. The same

method is followed where 60% of the data is used for training and 40% of the data

is used for testing the trained classifiers.

Group of Instances Correctly binned/Incorrectly binned
instances Train/Test Ideal Noisy

Pass 760/508 504/4 503/5

All fails 140/ 92 83/9 83/9

Total 900/600 587/13 586/14

Table 4.23: Ideal and Noisy classifier results.

Signature used by Number of unique
the classifier cross-covariances used

Ideal 10(10/SR4)

Noisy 11(11/SR4)

Table 4.24: Cross-covariance used by ideal and noisy classifier.
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The performance of the classifiers using ideal random and noisy random signatures

is almost identical. The classifier trained with ideal random signature lead to 4

pass instances being misclassified as fail whereas when trained with noisy random

signature lead to 5 pass instances misclassified as fail. Both the classifiers got the

same number of test escapes. The number of cross-covariances used also are almost

equal and they are used from the same sampling rate. The classifiers trained with

both the classifiers used the cross-covariances from 100 kHz sampling rate.

The experiment proves that combining the data converters along with the analog

circuit to form the Circuit Under Test (CUT) is a good idea as it does not affect

the performance of the classifier. The sampling of the digital word at the input of

the DAC is more easier than sampling the analog output of the DAC. From the

results of the classifier, it is suitable to embed the CUT in either ideal or non-ideal

data converters without affecting the performance of the classifier.
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Chapter 5

Conclusion and Recommendations for Future Work

5.1 Conclusion

The implicit functional testing (IFT) technique for analog circuits proposed in

this thesis has been evaluated and the results are presented for the implemented

strategy. The main takeaways from this thesis are described as follows:

� IFT is easy to implement because measuring all the performance parameters

is not required. IFT can be used to test different class of circuits because

testing is not dependent on data-sheet specifications. The technique is anal-

ogous to digital testing and can also be implemented in BIST circuitry. IFT

along with machine learning can ease the binning of analog circuits.

� Time domain digital measurements using data converters are easy to imple-

ment. The sampling of the signals from data converters eased the problem

of measuring analog signals. Cross covariance as a signature can fully char-

acterize the LTI analog circuit.

� For binning, the test signature is insensitive to the qualities of input. The

input test patterns are easy to generate in signature space testing. The

random input pattern can be applied externally to the circuit through an

ATE. The triangle and square input patterns can be generated internally

with the help of counters. The triangle and square inputs can be applied to

the circuit through BIST circuitry.

� Using supervised machine learning to train the classifier helped in binning
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new circuits as pass or fail. Training strong classifier from a number of weak

learners boosted the performance of the classifier. Training binary classifier

separately for each fail group focused on the common scenario of imbalanced

data in real world.

5.2 Recommendations for future work

In this thesis, cross-covariance is used as a signature to train the classifier. Other

attributes of signal such as power spectral density or power supply current can

be researched to be used as signature. The classifiers are trained with signatures

generated from functional as well non-functional input test patterns. The effect

of functional and non-functional test patterns on the classifier can be explored

and studied. The strategy is implemented on a linear analog circuit (OTA). The

implementation of the implicit functional testing strategy can be evaluated for

other linear and non-linear analog circuits . The dataset is partitioned as 60-40,

all classifiers are trained using 60% of the data and tested on the remaining 40%.

Training the classifier with different sampling sizes and the effect on the classifier

results can be explored. In this thesis the depth of the classifier tree is restricted

to level one. Relaxing the constraint to generate deeper trees can be implemented

to observe the effect of depth of trees on classifier results.
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