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Abstract

After an introduction to the variational principle of three body systems via
the Helium atom, we present general analytical formulas for the radial parts of
integrals that occur when three body systems are described using wave func-
tions that consist of powers and exponentials in all three interparticle Hylleraas
coordinates [1]. This work is an extension of integrals given by Harris, Frolov
and Smith, Jr. [2]. Specifically included are radial integrals encountered in cal-
culations involving the dipole moment matrix element in Hylleraas coordinates
that contain a function f(kr1) (such as a spherical Bessel function) in addition
to a plane wave, a hydrogenic orbital and exponentials in all three interparticle

coordinates.
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Introduction

This paper consists of two main sections. The first section is an introduction to the
variational principle for three body systems, which is an approximation technique
that provides accurate ground state energies and wavefunctions. Once the accurate
ground state wavefunctions are found by the variational principle, the second section
is a novel way of obtaining closed form analytical formulas for the matrix elements
of a dipole transition, p, = [¢5(z1 + 22)tb.dr. This leads directly to the atomic
’2

absorption coefficient, o = (6.812 x 1072°cm?)k(k* + 2I) ||, an important quantity

of interest for photodetachment.



Section 1

The Ground State of Helium

The Helium atom consists of two electrons in orbit around a nucleus that contains
two protons. The non-relativistic Hamiltonian, neglecting the motion of the nucleus
and given in atomic units, is
1,5 9 2 2 1
He 5 (Va4 VE) == b e )

L Ty |1y — Ty
where 71 and 75 denote the electron distances from the nucleus [3].

In this study, we would like to determine the ground state energy (the amount
of energy it would take to strip off the two electrons) and ground state wavefunction
for this system. The ground state energy has been measured with great precision in
the laboratory. The experimental value for the ground state energy of helium is £ =
—79.005151042 eV [4]. This is the number we would like to reproduce theoretically.
In many other three-body problems with non-Coulombic potentials there have been
found exact solutions. For an example of “heliumlike” potentials that have exact
solutions see Crandall, Whitnell and Betteha [5]. Straton has demonstarated the
usefulness of integral transforms for determining analytically reduced forms for a
general class of integrals containing multicenter products of 1s hydrogenic orbitals,
Yukawa or Coulomb potentials, and plane waves [6]|7][8]|9]. Yet, it is an unfortunate
fact that no exactly solvable solutions (in terms of algebraic expressions) exist for the
helium atom.

The feature that makes solving this system difficult is the electron/electron repul-
sion term. Therefore, we will start by ignoring the electron/electron repulsion term.

Thus, the approximated Hamiltonian is,



He o (Vi4v2) -2 -2 (2)

T
With the electron/electron repulsion term ignored, the Hamiltonian is just two in-

dependent hydrogen Hamiltonians with twice the Coulomb potential. Let us assume

two 1s hydrogen electrons have the radial wavefunction:

¢100(F1)¢100(I‘2) = wHe(I‘brz) = A Mritr2) (3)

where A equals Z/ag. We write the 1s hydrogen electron ground state in the form,

Y100(r) = %G_M- (4)

Thus the normalization constant for the total system is,

Using the eigensystem equation,

Hyp = Evp, (6)

the ground state wavefunction is spherically symmetric. Thus, the angular part is

constant and we find

—_1(190 (,20 =A(rit+re2) ;1 9 (.2 0 —A(r1+7r2)
H¢ -2 <'r% ory <’l“1 8T1> Ae + r% Org <’f’2 8T2> Ae

—2 peAMritr2) _ 2 fo—A(ritr2)
T1 T2

(7)

or

1 2\ 2\ 2 2
mo=[ LD D)2 2

T T r )



The equality must hold for any r; and 79,

_%)\24_&_%)\24_&_2_2 = F
1 ) 1 )
_)\2+ﬁ+ﬁ = FE. (9)
1 T2

Therefore, A = 2, and £ = —4 a.u. Using 1 a.u. = 27.211 eV, we find £ = —108.8 eV'.
However, the above solution ignored the electron/electron repulsion. The elec-

tron/electron repulsion term is [10]

Vig = i ! Z Z l+1 Yim (01, $1)Y, (02, 2) (10)

—I'2’ 2l+1

with expectation value

—2)\ T‘1+7‘2)
< Vig >= A // r1d3r2 (11)

vy — 1o

or

<Vipg> = A2Y7", D s IS e 2 rtr2) ;1 r2ridridry
X ff }/}m(ﬁl,(bl)siandQld(bl (12)
X ff Yljn(ég,@)sin%d%dgbz.

Looking at the first spherical part and knowing that Yy, = Y, = we have

\/77

// Vi (00, 61)sinbrdfydey — v/ir // Vi (81, 61)Y (61, 61)sinfydbydry — /A doudom.
(13)

Therefore Eq. (12) simplifies to



< Vig >= A? Zloio Zin_fl 41 ff 6_2)\ r1+72) Tfl 7’1T2d7"1d7"2\/ 47T50l50m\/ 47T50l50m

162 A2 ([ p—2A(r14r2) 1,.2,.2
=1672A% [[ e 12 T>r1r2dr1dr2.

In order to integrate this expression, we pick the limits of integration carefully,

2 oo
< Vig >= 167r2142/e_2’\r2 [/ e 2y 2T2d7“1 +/ e 2y rzdrl} dro, (15)
0 r2

which can also be shown to be

< Vig >= 1612 A2 [ e 2Ar2 [m_ 2M22\3 Ae”2Ararg ] dry
_ 2 42
=167 A 128)\5
A 2 5
= 16* <?> 128X (16)
_5
=5\
-3
1
in atomic units. Thus, £ = —4 a.u. _,_2 ann. — _% won or B — —748 V. This

is an improvement on the first approximation, which ignores the electron/electron

interaction.

Using the Variational Principle

In most cases, it is best to use the variational technique to improve the wavefunction.
Let A be our variational parameter that will need to be minimized at the end of our

calculation. Starting with the trial wavefuction,

)\3
¢He(r1,r2) = ?e_A(TH_TZ). (].7)



The expectation value is

<H> = [[[-2+

+(A=2) 2 [ Le At ey dPry 4 2A

T1 T2

_ o] a6 _
A2 | A 2] 2_26 2A(ri+2) By Bry + §>\

8
_% ff 6—2)\(r1+7‘2)d3r1d3r2

+ (/\ - 2) :\r—z f %672)‘(T1+r2)d3r1d31‘2

Let us do this piece by piece. The first integral is

ff 6—2)\ T1+T2

d3r,d>ry

= 1672 [ e 2A"1r2dry [ e 2 "2r3dry

Now, the second integral is

Therefore,

it

_ 21 1

AN3 4
_

= Y6-

T1

Le—Q/\(T1+T2)d3r1d3r2

= 1672 [ e 2A"ipydry [ e 2r2dry

)\82

<H>=-5%5+

— )2

_ 2.1 1
=167 3

X214
_ 2

=3

We find the minimum of this function to be:

or

(A—2) 2%+
FA=2)A+(A—=2)A+2x
=\ -2\

27

(A —2) 50 4 5N

i<H> 22— —=0

dX

8

(18)

(20)

(21)

(22)



27

A= — = 1.6875. 23
T (23)
Thus, the ground state energy is
729
E = ~ogg OU- = —2.848 a.u. = =775 eV (24)

which is within 2% of the experimental value.

Hylleraas coordinates

The most common coordinates in which to compute the variational integrals are the

Hylleraas coordinates [1]. In this coordinate system, one uses wavefunctions of the

type
1 ~
Y(ry,re, i) = E(l — Ppp)emom—przmm Z Clmn S T2 U™, (25)
l,m,n
where s = ry +1r9, t = 11 — 19, u = r19 = |r; — 19| and Py, is the permutation

operator for two identical electrons. The Hylleraas approach explicitly accounts for
the interactional motions of the two electrons through the variable © = 5. In fact
the Hylleraas coordinate system is not a formal solution for the helium atom [11] [12],
yet it has had great success in yielding accurate values for the ground state energies

of three body systems. For example, a basis set of six wavefunctions could look like

[13]7



wl — e—arl—ﬁrg—'yrlg

% =  e—ari—Pra—rizy,

Yy = e—ar1—Pra—yrizy2
(26)

Yy = e~ ar1—fra—riz g

¢5 = e m—fr2—riz g2

¢6 — efarlf,b’rgf'yrlqu,

where
=)ty (27)
i

From this, one can obtain £ = —2.90324 a.u., which differs from the “exact” value

by only 0.00048 a.u. In fact, the ground state of Helium is one of the most accurate
theoretical numbers that has been calculated by quantum mechanical approximation
methods. In particular, K. Frankowski and C.L. Pekeris obtained in 1966 the value
E = —2.9037243770326 a.u. [14]. It should be noted that in this discussion we have
ignored the the mass polarisation term (—ﬁvm -V,,) and relativistic correction term
(—%) that are given in Pekeris’ earlier work [15][16].

2

The usual volume element d*r d®ry = rir2sinf,sinf,dridrodf;dfsdp,dds, can be

modified by referring to Euler angles. The Euler angles are defined as:

th=0;01 =9
c0sby = c0sOc0sOqy + siNOsinOycosV
sinfysin(ps — ®) = sinO@ysin¥ (28)
cosl, = cosOcosO,, + sinOsinO, cos(V + ¢,)
sinf,sin(p, — @) = sinOsin(V + ¢,);n > 2,
where n allows one to generalize to more particles if needed. The motivation for using

the Euler angles ©,®, U, is the importantSfact that the angles can be separated from



one another and can be solved for more readily [17|. Using these angles transforms

the volume element into

dV = d3T1d3T2 = rfr%drldrgsinelsin912d91d912d¢1d\II. (29)

Since the functions involved depend only on rq, o and 79, the angles ¢, 6, and ¥

can be integrated, producing a factor of 872, leaving

dV = 8m*riridridrysind odbs. (30)

Using, r2, = ri4r2—2r1ryc08612, we have that ri7rysinf2dby = ri2dri2; consequently,

dV = 87T27“17"27”12d7“1d7°2d7"12. (31)

Note that the volume element is only a function of 71,75, 715. This allows integration
over three coordinates rather than the usual six.

Let P be the probability density such that,

r1+7r2
P = 8x? / / / V¥ hrireriadridradrys. (32)
|r1—r2]

Note, the absolute values can be handled by

ry— Ty ry 2> T
ry— 1ol = (33)
—(7”1—7”2) T < T2

Thus,

r1+T2 r1+T2
/ |:/ / @ZJTl’I"Q’f’leTle’l“l + / / ¢T17"27’12d7“12d7“1 dTQ
(ri—m2) r1—r2

(34)



The Hamiltonian in the basis (71,79, 712) is

H — 1o 19 9 109 109 2 9
2 87"% 2 87‘% (97"%2 r1 Ory ro OT2 r12 Or12
ity 92 rioritrd, 92
2riri2 Or10ris 2roria Oredris

Z Z 1
(See Appendix for derivation.)

The overlap integral matrix elements is defined as A;; = (¢; | ¢;) or

— (1) (1] ) (1| 2n)
<¢2 | w1> <w2 | w2> <¢2 ’ ¢3>
(W3] 1) (W3] tha) (3] 43)

(35)

This is sometimes referred to as the metric because it shares many similar properties

to those of ¢,,, the gravitational tensor. Projecting the overlap integral onto the

coordinate basis,

Wilwy) = @il[Ir) (r|dV] )
= [ Wilr) (rley)dV
= J¥iydv,

it can be seen that

r1+r2
<¢z | wj = 87° / / / iﬁ%rﬂ“ﬂudﬁdmdﬁz
|r1—72]

Likewise, for the Hamiltonian matrix elements, we have

7”1+7“2
Wz ‘H|% = 8n” / / / | H% rireri2dridradrya,
[r1—r2

where

10

(37)

(38)

(39)



[ H ) (o H ) (an |H )
(o | H 1) (s [H| ) (a0 |H]| i)
(s | H| 1) (s [H| ) (s |H]s)

The eigensystem is

Hy = Fu. (41)

Muliplying by both sides by 1* and integrating over all space the energy eigenvalue

can be expressed as

S (Hp)dV > cie;Hy,
[ospdV Y cre Ay

where ¢ = ) ¢;4; and the sigma means we sum over any repeated index ([18| p.187).

B =

(42)

Thus,

E Z C,?CjA,‘j = Z C:CjHij- (43)

To find the values of ¢; that make E' a minimum, we differentiate with respect to each

Cl.:

ackZCCJAU—i_E ZCCJ Zj:ac ZC cjHij. (44)

The condition for a minimum is that gTEk =0 for all £ = 1,2, 3..., which leads to the

set of equations to diagonalize,

ZQ’(HU‘ - AijE) =0. (45)

i

For smaller basis sets, we may also use the fact that for a non-trivial solution it is
11



necessary the determinant of the coefficients to vanish,

This equation leads to a large polynomial in E, where the lowest value energy, F,in,
corresponds to the ground-state energy. Plugging E,,;, back into ) . ¢;(H;; — Ay E) =

0, one can determine the coefficients c;.

12



Section 2

Photodetachment

Starting in the 1940’s, Chandrasekhar expanded on the study of the continuous ab-
sorption coefficient of the negative hydrogen ion initiated by Jen [19]. The key
problem is to evaluate the (length gauge) dipole transition matrix element p, =
[ Wi(z1 + 22)1.d7 [20], where 1y denotes the wave function of the ground state of
the ion and 7. is a continuum state wave function correspond to the outgoing elec-
tron. Once the dipole transition matrix elements are evaluated, the standard length

formula for the atomic absorption coefficient is

o = (6.812 x 10~ em?)k(k2 + 21) |.)? (47)

where I denotes the electron affinity and k is the momentum of the ejected electron,
with all quantities in atomic units [21][22][13]|. Evaluating p. for wave functions 1y
of the Hylleraas form [1| has historically been done via numerical integration. We
present an analytical integration method for such wave functions herein. Although
this formalism was developed for the specific problem of photodetachment, it is likely
to find utility in other problems that calculate dipole transitions involving single
photons or laser fields. In order to evaluate u,, we shall assume v, to be a wave
function of the Hylleraas form, and . a plane wave representation of the outgoing
electron and a 1s state for the remaining electron:

1 . .
ch — (ezkzl —rg + ezkzg—rl)’ (48)

N

13



where we have chosen the z-axis of the coordinate system to correspond to the prop-

agation direction of the outgoing electron.

Definitions

The Hylleraas coordinate system [1] utilizes coordinates s = 11 + ro, t = 11 — 73,

u =T = |r; — ra|, and one builds wavefunction of the type

1 R
Ya(r1,me,m12) = —=(1 — Ppg)e om—FPra=me Clmn ST U™, 49
V2

I,m,n

The action of the Hamiltonian on Hylleraas wavefunctions leads to generic radial
integrals of the type found by Calais and Lowdin [23], Sack, Roothaan and Kolos
[24], and more recently Bhatia [25][26]

r1+re
L (e, B,7) / drl/ d?”g/ drlgrllr;”r?Qe_Q”_5”_7”2, (50)
|

172
where «, 8,7 are non-negative real numbers. We also assume that [, m,n are non-
negative integers. A compact analytical formula for Eqn. (50) has been provided by

Harris, Frolov and Smith [2],

m—m' +1 [ n—n'+m

/ n/ m/

Cin (v, B,77) = 2l!m!n! : .y Y
( Zm,zonlz:() Oé‘i‘ﬁ m m+l+1(a_|_,y)lfl+n+1(ﬁ_|_,y)nfn+m+l
(51)

14



Integrals A, (a, 3,7; k)

In the calculations of electric dipole moments elements using Hylleraas wavefunctions,

one encounters integrals of the form

N (v, B, 73 K // mari=fremariaplpmgn (0 4 zo) (e T2 4 et By dPas,

(52)
where we have dropped the normalization constant 1/ V27 from .. This is the
integral we must evaluate. The approach we adopt, however, may well be generalizable
to a wider set of single photoionization and laser problems where one can find integrals
that take on similar forms to Eqn. (52) [27][28] [29][30]. Eqn. (52) can be written in

the form

Almn(aa67’7; k) = 87r2 ffeiarl —Bra= ’WIQTITgnr?zzlelkzlimd:sl‘ldgl’g

W ffe_wl_ﬁrz_wmrllrglr?zzlemzrmd3$1d3$2
(53)
87r2 ffefarl Bro— 'yrlgrlrmr? Z2€zkz17r2d3xld3x2

+ o+ o+

—ary—pBro—r l,m,.n ikzo—r1 3 3
S?Ife 1627127"7“27“12226 2 Md 1 d’ze.

We will break this into smaller pieces by defining each term in the previous equation

as

Almn(aaﬁvv;k) - lmn( 6777k‘)
+ A2 (a, :
l ( B,7; ) (54>
+ A, 8,75 k)
+ AR (e, B, k)

Integrals A}, (a,3,7;k)

We first focus our attention on the term,



Al%ln( 76777 8 2// —or1—fra— W”rl'r’mr?zzlelk'zr”dga:ld?’xg. (55)

Using spherical harmonic expansions [31];

and

00 l
zkrcos@ Z Z ]{,’7’ lm( T7¢7“) lm(elﬁqﬁk) <57)
=0 m=—1

it can be shown that

Allnlm< 8,7 k) = L\/ 41ff‘fwl_ﬁm_ym7"l17“§n7“?27“1Y10(91,¢1)
xe " ZL osz Ll JL(kTI)YLM(91a¢1) LM(Qk,¢k) S11d3xs.

(58)

By expressing the volume element in terms of the solid angle d€2;5 (See Calais [23])

d3$1d3$2 = T%Sin@ld’l“ldeld¢1T%SiTL92dT2dQQd¢Q
= T%Sineld'f’ld91d¢17€8in912drgd912d¢12 (59)
= T%d?“ld@l?"%drgdﬂlg,

we may more readily evaluate the integral. With this transformation, one finds

N (@, B,73 k) = % \ %T ZZO:O ZZ:—L iLYEMwm )
> f f e—am—57‘2—7T12rll+3r7271+2r?26_T2jL(krl)drldr2 (60>

X [ Yio(0r, 1) Yo (01, ¢1)dQ [ do.

16



Using orthogonality,

Al%ln( ) Ba ) k) = % \/ & ZEO:O Z'rlrlz:—L iLYL*M(QkH Qbk)

x [ [emon i et ez gy (kry)diry iy (61)
X 011000 fde
or
Ajpn (v, 8,73 k) = —Z// mari=fremyri S mt2n o2 (krl)drldTQ/dQH- (62)

The last integral can be written out in terms of spherical angles,

1 - —Qar T T m n —Tr -
lmn( By k) = %2// 1=Ara=1mz HS +27“1 2 (k’rl)drldrg/szn912d912d¢12.

(63)
Now we can convert angles into magnitudes by law of cosines
2 2 2
T{ 75 — T
costjg = ——=——= 64
12 27“17“2 ( )
This gets one into a function of the basis (r1, 79, 712) by noting that
7”12d7"12 = T1T28in012d912. (65)

In order to determine the limits, we note that when 615 = 0 then cosf15 = 1. Therefore
we have 7%, = 72 + r2 — 2r;ry and we find ry5 = |r; — r3|. Also, when 65 = 7 then
cosfi; = —1. Therefore we have 72, = r? + r2 + 271719 and 715 = r; + r5. Using Eqn.
(65) with the correct limits of integration and after evaluating the ¢ integral, we

17



find the result,

r1+72
AL (o By k) = i / / / S (s L2 e e
lr1— 7“2|
(66)

Integrals Aj2 («, 3,7; k)

The second term is

1
Al1n21n< 75,*}/; ]{;) = @//eam —Bra— ’Yr127,lT,mrﬁzlezkzz*r1d3xld3x2 (67)
or
A, B, 73 ) = LA [ [ emomimBramyma gt Yig (61, 61)

ey ZZ:_L g (kra) Yo (0, ¢2) Y0 (Or, dr) dPardP .

(68)
Using the expansion [32],
Yio(01,61) = Y0 (D OM’(O 02, 92)* Y101 (612, P12) (69)
= ZM/:_1[\/ Y1 (, 02, 92)]"Yine (612, 612)
one finds
A2, By k) = A S S e 1 iPY (O, )

x [ [eom=Bramomaplt3pmt2en oori g (kro)dr dry

X [ Y (02, 02)Yirr (B2, ¢2)dQ% [ Ying (O12, d12)ds

18



L 1 .
= 217r 4:? Ziio ZM:—L ZM’:—l ZLYL*M(@k, Pr)T2

x [ [eom=Bra=amapltSpmt2en o= (kry)dryd

X100 [ Yin (012, ¢12)dQo

= A S 1 1Y (O, o)

« ffe—om Bro— 'yr127nl+3 m+2rn e "1 (k’?”g)d?"ldTQ

X [ Yin (012, pr12)dQo.

(70)

Here we note that [ e¢®d¢ = 0, which means only M = 0 will be the non-zero term

in the summation. Thus, we have

A (. B.K) = A7 O, )
« ffe—amfﬁrzf’yrurl"‘:i m+2r?2 - (]{ZT’Q)dT’ldTQ

X f Yio(6h2, ¢12)dSo.

Expanding Yio(612, ¢12) in terms of trigonometric functions leads to

Apalas Boysk) = g [ [ememmframamzp o teg, omr gy (kry) drydry

X ffCOSngsin912d012d¢12.

Applying Eqn. (64) and Eqn. (65) to the angle integral, we find

A12

Imn

(a, 8,73 k) = i [ [emomframimaplt3pt2en o=r1j) (kry)dridrs

% f 7“1"""2 T12 T2 T12fd¢12

2r1ro r179

19
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(72)

(73)



or

Allr?m( , 8,73 k;) = ll'fffe*(a+1)r1fﬁr2*’\/r12j1(kTZ)

< (riPrgris e — e drydradry. (74)

The final two integrals AZL (o, 8,7; k) and A?2 (o, 8,7; k) are essentially identical to

the proceding integrals with r; and ry switched. Putting this all together leads to the

result,
. o 1472 +2,m+1,_n+1 e—ar +1)ro—vyr
Aun (0 B3 k) =4 [57 dry [55 dra [0 dirasga (kr)ry ey 1= (B+1)r2—r12
i [O© rit+re . l,.m+3,.n+1 142 m+1 n+1 m+1,n+3
+35 Jo dry 5 dr f|r1_T2\d7"12J1(k7’1)(7"17’2 T+ iy =y )

Xe o= (B+1)ro—yri2

i [0 o0 r1+r2 4 Pl L me 2l L m
+3 fo dry fo drs f|r1_r2|d7°12]1(k37“2)( Ty Ty +7T e =gy Y)

% e—(a-i-l)m —Bra—yri2

ri+r2 . l+1 m+2,.n+1 _—(a+1)ri—Bra—vriz
+Zf0 dry fo dr?fr _r2|d7”12]1(/€7’2) ryt2pnile=(atl) ,

(75)

where j () = 242 — €2 jg the spherical Bessel function of the first kind.

Integrals Jryn(a,b, c; k)

The integrals that make up Ay, (v, 8, 7; k) share many similarities with 'y, (o, 5, 7),
with one additional function ji(kr). We follow the definition given by Frolov and

Wardlaw [33],

r1— T2|

r1+r2
Jrun(a,b,c k) / drl/ drg/ driaga( krl)rfréwr%e_“”_b”_cm, (76)
|



where a, b, ¢ are non-negative real numbers. We also assume that L, M, N are non-
negative integers.

Deriving an analytic formula for integrals of this type is the remaining goal in this
study.

By switching the arguments in Jryn(a, b, ¢; k) to Joyn (b, a, c; k), Eq. (76) can be
used in the cases where the spherical Bessel function has kry as its argument. Using

Jrvn(a, b, ¢ k), Eqn. (75) becomes

Almn<a7 67 e k) = iJl+2,m+1,n+1 (a7 ﬁ + 17 Y k)
+% [‘]l7m+3,n+1 (O{, B + 17 e k) + Jl+2,m+1,n+1(a7 B + 17 Vi k) - Jl7m+1,n+3(a7 B + 17 Vi k)]
+2 [Tngrsni1 (B a+ 1,7 k) + Jngopiini (B, + 1,75 k) — Jngsinss(8, 0+ 1,75 k)]

+ijm+2,l+1,n+l(ﬁ7 o+ 17 Vi k)a
(77)

where we now assume that [, m, are non-negative integers and n is an integer such
that n > —1.
Frolov and Wardlaw [33] recently showed that,

Jooo(a, b, c; k) = [L(a+ c; k) — L(a+b;k)]. (78)

b2 _ 2
In this case, L(p; k) turns out to be the Laplace transform of the spherical Bessel
function j;(kr), although this procedure generalizes to any function by simply taking

the Laplace transform of the specific function desired. In particular, for jy(kr) [34],

[35] Y

Lipik) = % [k _ pmn—l(g)] . (79)
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General Approach

Following the standard procedure of taking multiple derivatives within Eqn. (78) to

obtain higher powers of ry, r9, and r15 [23],

Loy 00 O 0

Jrun(a,b,c k) = (—1) N 5O Da ——Jooo(@, b, ¢; k). (80)

Noting that only the L(p; k) part of Jooo(a,b,c; k) depends explicitly on a, we find

that

iy OY M

JLMN(aa b, C; k,’) = (—1) aCN 8bM

{b2 E 2 [Lr(a+c; k) — Lp(a+ b k)]} (81)
where

Calpih) = (1 el b) = (0P (k= pran )] (82

and p=a+ cor a+b. It can be shown that

k% [k‘ — ptanil(g)} L=0
k12 [ 2+k2 + tan~ (%)] L=1

i(L—2)! [p+sz _ p—ikL] _
£L<p; k) = 2k2 (p+ik)L (p—ik)L | —

J(L+1 o .
Zm(-) WD oy g L =234,

l<;2+p s j+1
(L+1) L+2 2F (%7ﬁ'_.__§) LEO

2 "2 p

(83)
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or (L+DIT(E)  # L+1+1 L+2+1, 3 k?
_1\L 7 : . — 2 F -1 =
( ].) 2(]l(k7")ﬂp) 2l+1F(l+3/2)pl+L+1 ( 9 ) 9 y + 27 pz)a

(84)

where the “(2)” on the summation sign in the last line indicates steps of two. We have
included Eqn. (84) (for [ not necessarily equal to 1) for completeness.

Next, we use the Leibniz product rule for multiple derivatives [36],

N M P
M N M
Jonn(a by k) = (=DM SR 3, aacN’%ﬁ
N’ M’

8N—N’ aM—M’

X s s |[Lr(a+ e k) — Lr(a+bik)],

(85)
and define the function
oN oM 2
FMN(ba C) = (_1)M+N80N ObM p2 — 2° (86>
It can be shown that
M- M + N’ N - N + M
M N N/ M/
Nl
Fn (b, ¢) = 2MIN! Z Z (=1) (b— ) M=M+N+1 (4 o) N-N+M+1 - (87)

M'=0 N'=0

Thus,
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JLMN(a7 b, c; k’) =

N M / /
N M BN _agr AN=N M—M
D N1=0 2M=0 / / Fupe (b, ¢)(=1)N-NHMM 00 O L (a + ¢ k)
M
N M , ,
N M RN _apr AN—N M—M
— N0 2 M=o v o Fape (b, ¢) (= 1)N N MM IR O £ (a + bs k).

(88)

Looking at the term %EL(CH-C; k), we note that L, (a+c; k) is not a function of

N !

b. Thus, this term is zero unless M — M’ = 0. Likewise, for the term gCN—:]IVV,EL (a+b; k),

we see that N — N’ = 0. Therefore,

N / gN—N'
JLMN(CL, b, C, k’) = Z%’:O FMN/(b, C)(—l)N_N %,CL(Q + C, ]{?)

N/
(89)
M M M—M' gM—M’
— 2o Fyn(b,¢)(—1) s Lola+ b k).
M/
This finally produces the formula desired for this study
N N
Joun(a,b,c; k) = v, Fyni(b,e)Lron—ni(a+c; k)

N/

(90)

Y M
=2 wr=o Fyn (b, ) Lpyn—nr(a+ b k).
M/

This procedure can be generalized to any integral of the form
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ri+r2
Jovn(a, b, c; k) / drl/ d?"g/ driof(kry)ry Té\/lrﬁe_“”_b”_cm. (91)
|

r1—ra|

as long as one can find the Laplace transform of f(kry).

Conclusion

We have confirmed that by using Hylleraas coordinates, the three body system of
helium could be solved via the variational principle, and it generates very accurate
results for ground state energies and wavefunctions, which are the starting points for
calculations of photodetachment. We then developed an approach that is successful
at obtaining closed form analytical formulas for three body integrals containing any
function f(kry), provided one can find the Laplace transform of the function. Our
interest in obtaining these formulas was the application to calculation of photodetach-
ment in three-body atoms. However, such integrals are of interest in many problems
in the areas of atomic and nuclear physics. While solutions to these integrals have
heretofore been evaluated numerically, the computational load is greatly reduced with

an analytical result.
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Appendix

Derivation of the Hamiltonian in Hylleraas Coordinates

We start with the Hamiltonian

4 7 1

1 1
H=—3¥ v -2 2

r1 T T12

The Laplacian is defined as

2 _ 9, 9, 9
Vrl 022 +8y% _'_82%
2 _ 9, 92, 97
Vm_ ox3 +8y§+8z§'

We would like to transform into coordinates

2 __ .2 2 2
rY =27 YT A

9_ 92,92, .2
ry = Ty + Y5 + 25

7’%2 = (w3 — xl)z + (y2 — yl>2 + (22 — 21)2-

We start with the chain rule

00 _00On 0V or  0b O
8x1 N 87’1 8$1 (97’2 (9.251 87’12 8:101 ’

The three derivatives we need are:

67“1 1 _ X1
oo = 3@ Ui+ )2 =

ors

=0
31:1 ’
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(93)

(95)

(96)
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(97“12 1 To — X1

dxy (@ =21)" + (92 = 91) + (22 — 2)") 22w —21) (1) = - ra (58)
Thus,
0 a0, 00 ([ m-m
Ory  Orir * 87”20 * Orya ( T12 ) - %)

However, we still need the second derivative. Applying the chain rule once more, we

find

W_z/z_@gbi(:pl)_i_ %Y o oy 0 (_$2—$1)+ 0% (_272—1'1)'

8x% (97"1 ﬁxl T1

8ZL'1dT1 T1 87"12 8m1 T12 8x1dr12 T12
(100)
The derivatives we need are as follows:
9 (1 1 Lo o a3 1 2
— (=) =42 |- +yf +2 20| = — — =, 101
0x; (rl) r1 1{ 2< 14 ) ! rooor3 (101)
(=) - RIS
X [=3((w2 —21)2 + (2 — 11)? + (22 — 21)%) ¥/22(w3 — 21)(—1)]
_ 1 _ (z2-m)?
T2 TPy
(102)
0% Yoy 4 % Ory &y dria
Oxidry 87‘% Ox1 Ore0ry Ox1 Or120r1 Oz
_ 9%y 0% To—1
- 87"% ﬁ + 87‘287‘10 + Or120r1 <_ 27‘12 1) ) (103)
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%Y dry 9% Oria

9%y _ 92 ory
Ox10r12 — Or10ri1a 0x1 Oro0ri2 0x1 87‘%2 Oz
_ P om . 02 (_z2—m 104
T Ori0riz i Oro0ria or3, r12 ? ( )
and
2y _ ov (1 =
9z or1 \ 1 r$
%P a1 Y ( wo—xi \\ax , Oy (1 (z2—=z1)? 105
+ <8r1§ r1 Or120r1 12 1 + Oria \ ri2 1312 ( )

or10ria r1

0%y o o2 To—T To—T
+( n T o (——>) <——>

This produces the result for the second derivative

Py Pyri o (1 o) | 0% (p—m)?
Oxy 87’% % or1 \r1 7‘:1)’ 87‘%2 1"%2

) (106)

Oria \ ri2 L

o (L _ (mamm)?
@a-z1)?

0%y x1(x1—2x2)
or10ria riris

= m|€

needs to repeat this procedure for all second derivatives of the Laplacian (

One
Py 2y %y Py ¢
9T 070 0 o 8—25). One finds the others to be

Fu _ e 0w (1 #) 4 9 ew)?
ay% 87‘% r% ory \r1 r% 87‘%2 7“%2
oy (1 (-wn) 107
ori2 <7"12 7"%2 ( )

+ 0% yi(yi—y2)
or10ri2 T1r12

Y

Py _ Py oov (1) 4 Py(@on)?
02 — orir? or1 \ r$ ory, i,
a (1 (z:2—=1)? 1
87"12 <T12 7"‘;’2 ( 08>

_|_ 821/) z1(z1—22)
Or10ria ririe

’
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Py 9% + w (_1 2 + 82y (wa—21)?
0z3 — T Or?r} or1 r1 r3 or{, ri,
o (1 (ma—x1)? 109
+8T12 < 712 7?2 ( )
% za(w2—z1)
+287‘187‘12 T17T12 )
% _ vyl Lo (1 _ v3 + %) (y2—y1)*
@ W? ory 1 ry ors, T
oy (1 (yp—y1)? 110
oriz < r12 3y ( )
9% y2(y2—y1)
+2 r10ri2  ririz
and
Oy _ 9 o (1 5 0% (aoa)
025 - 87’% 7‘% 1 r1 7‘11” 87‘%2 7’%2
o (1 _ (2=n)? 111
+8T12 ( r12 3y ( )
0%y za(z2—21)
+2 r10ri2  ririe
Combining these together and noting that
2 2 2
i =1y 11 = 2[x1(21 — 22) + Y1 (Y1 — ye) + 21(21 — 22))] (112)
yields
S VO v 19 192 9 19 1o 2 9
2V 2 Vr2 T 2 ar% 2 Br% 8r%2 r1 Ory ro Org r12 Orio
_rioridr, 92 ri—ridrd, 92 (113)
2riri2 Or10ris 2roria Oro0ria”

Thus, the Hamiltonian in 7y, ro, 712 basis is,
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- _l19 19
H = 20r? 2 Or3

2_.2,.2
_ri—ratriy 92

0?2 1 9 1 9 2 9

Iriy r1 Ory ro Org r12 Ori2

2_.2,.2
Ty ritriy 92

2r17r12

or10ria 2roria Ora0ria

Z Z 1
Gt n )

The volume element in this coordinate system is

oo [e'e] r1+72
V = 87'('2/ dry / dT‘g/ dris r1ra719.
0 0 |r1—7ra|

One might also like to transform into

which implies

1
T2

12

the Hylleraas s, t, u basis,

= ri+7r
= T =T

= T12

(s+1)
(s —1)

= u.

N[—= N

We can use the same chain rule procedure as before,

ov _ovos
dry  Os Ory

o0 ot

o 9t | Oy du
ot 87"1

%87“1.

We will leave the details to the reader. The result is

34

(114)

(115)

(116)

(117)

(118)



4 9 _ 45 9 _ 20
s2—t2 Os t2—s2 Ot u Ou (119)
_ 2s(uP—t?) 92 2t(s®—u?) 92

u(s2—t2) 9sdu u(s2—t2) Otdu

—(ez, 1
s2—t2 u/’

The volume element in this coordinate system is

V:27r2/ ds/ du/ dt u(s* —t%). (120)
0 0 0
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