Sponsor
The work of the co-ordinating centre was funded by the UK Medical Research Council (G0800270), British Heart Foundation (SP/09/002), British Heart Foundation Cambridge Cardiovascular Centre of Excellence, UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council (268834), and European Commission Framework Programme 7 (HEALTH-F2-2012-279233). The Emerging Risk Factor Collaboration’s website https://www.phpc.cam.ac.uk/ceu/erfc/list-of-studies/ has compiled a list provided by investigators of some of the funders of the component studies in this analysis. I.W. was supported by the Medical Research Council Unit Programme MC_UU_12023/21. M.K. is supported by the Netherlands Organization for Scientific Research (NWO) Veni grant (Veni, 91616079). J.P. is supported by Erasmus Mundus Western Balkans (ERAWEB), a project funded by the European Commission.
Published In
European Heart Journal
Document Type
Article
Publication Date
2019
Subjects
Cardiovascular system -- Diseases -- Risk factors
Abstract
Aims: There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after ‘recalibration’, a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied.
Methods and results: Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at ‘high’ 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE overpredicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29–39% of individuals aged >_40 years as high risk. By contrast, recalibration reduced this proportion to 22–24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44–51 such individuals using original algorithms, in contrast to 37–39 individuals with recalibrated algorithms.
Conclusion: Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need.
Locate the Document
DOI
10.1093/eurheartj/ehy653
Persistent Identifier
https://archives.pdx.edu/ds/psu/28945
Citation Details
Pennells, L., Kaptoge, S., Wood, A., Sweeting, M., Zhao, X., White, I., ... & van der Schouw, Y. T. (2018). Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. European heart journal, 40(7), 621-631.
Description
© The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com