Document Type

Working Paper

Publication Date



Genetic algorithms -- Mathematical models, Genetic programming (Computer science)


In this paper we review some previously published experimental results in which a simple hillclimbing algorithm-Random Mutation Hill-Climbing (RMHC)-significantly outperforms a genetic algorithm on a simple "Royal Road" function. vVe present an analysis of RMHC followed by an analysis of an "idealized" genetic algorithm (IGA) that is in turn significantly faster than RMHC. We isolate the features of the IGA that allow for this speedup, and discuss how these features can be incorporated into a real GA and a fitness landscape, making the GA better approximate the IGA. We use these features to design a modified version of the previously published experiments, and give new experimental results comparing the GA and RMHC.


Santa Fe Institute Working Paper 1993-06-037. Subsequently published in Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©1993.

Persistent Identifier