Published In

eprint arXiv:1701.01999

Document Type


Publication Date



Quantum computers -- Circuits, Reversible computing, Quantum theory


In this paper we present a method for minimizing reversible quantum circuits using the Quantum Operator Form (QOF); a new representation of quantum circuit and of quantum-realized reversible circuits based on the CNOT, CV and CV† quantum gates. The proposed form is a quantum extension to the well known Reed-Muller but unlike the Reed-Muller form, the QOF allows the usage of different quantum gates. Therefore QOF permits minimization of quantum circuits by using properties of different gates than only the multi-control Toffoli gates. We introduce a set of minimization rules and a pseudo-algorithm that can be used to design circuits with the CNOT, CV and CV† quantum gates. We show how the QOF can be used to minimize reversible quantum circuits and how the rules allow to obtain exact realizations using the above mentioned quantum gates.


This paper was subsequently published in the Proceedings of the ULSI Workshop 2012 (@ISMVL 2012).

Persistent Identifier