Published In

Communications Engineering

Document Type


Publication Date



Ocean sounds, Acoustics (Physical sciences)


Abstract Knowledge of sub-seabed geoacoustic properties, for example depth dependent sound speed and porosity, is of importance for a variety of applications. Here, we present a semi-automated geoacoustic inversion method for autonomous underwater vehicle data that objectively adapts model inference to seabed structure. Through parallelized trans-dimensional Bayesian inference, we infer seabed properties along a 12 km survey track on the scale of about 10 cm and 50 m in the vertical and horizontal, respectively. The inferred seabed properties include sound speed, attenuation, density, and porosity as a function of depth from acoustic reflection coefficient data. Parameter uncertainties are quantified, and the seabed properties agree closely with core samples at two control points and the layering structure with an independent sub-bottom seismic survey. Recovering high resolution seabed properties over large areas is shown to be feasible, which could become an important tool for marine industries, navies and oceanic research organizations.


Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit © The Author(s) 2024



Persistent Identifier