Published In

Journal of Climate

Document Type

Article

Publication Date

5-2020

Subjects

Lightning -- West (U.S.) -- Observations, Meteorology -- West (U.S.), Lightning -- West (U.S.) -- Longitudinal studies, Atmospheric science, Climatology -- West (U.S.)

Abstract

A 30-yr climatology of lightning days and associated synoptic meteorological patterns are characterized across the interior western United States (WUS). Locally centered composite analyses show preferred synoptic meteorological patterns with positive 500-hPa geopotential height anomalies located to the northeast and negative sea level pressure anomalies to the northwest and collocated with local lightning days. Variations in preferred patterns for local lightning days are seen across the interior WUS. Areas not commonly affected by the North American monsoon system including the western Great Basin and northern Rocky Mountains show higher-amplitude anomalies of geopotential height, moisture, and midtropospheric instability patterns suggesting the importance of episodic midlatitude dynamics to lightning days in such locations. By contrast, locations closer to the core of the North American monsoon show weaker anomalies, likely reflecting the prevalence of favorable mesoscale dynamics key to lightning production during warm-season months in locations in the interior Southwest. Meteorological patterns for select locations are explored in more detail and two case studies of notably active lightning events are presented. Results from this observational analysis provide a foundation for evaluating meteorological conditions on lightning days in climate model simulations for the interior WUS.

Description

© 2020 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

DOI

10.1175/JCLI-D-19-0564.1

Persistent Identifier

https://archives.pdx.edu/ds/psu/33365

Available for download on Saturday, May 15, 2021

Share

COinS