Published In

Environmental Research Letters

Document Type


Publication Date



Evapotranspiration, Runoff -- Environmental aspects -- United States


An understanding of the role of hydro-climatic and geographic regimes on regional actual evapotranspiration (AET) change is essential to improving our knowledge on predicting water availability in a changing climate. This study investigates the relationship between AET change for a 60 year period (1951–2010) and the runoff sensitivity in 255 undisturbed catchments over the US. The runoff sensitivity to climate change is simply defined as the relative magnitude between runoff and precipitation changes with time. Runoff sensitivity can readily explain the conflicting directions of AET changes under similar precipitation change. Under increasing precipitation, AET decreases when runoff is increasing more rapidly than precipitation based on the water balance. Conversely, AET increases when runoff is decreasing more rapidly than precipitation. This result indicates that runoff sensitivity to climate change is a key factor for understanding regional water availability change at the catchment scale. In addition, a stepwise multiple regression analysis and a geographically weighted regression analysis show that the portion of evergreen forest and the mean elevation of a catchment may play a secondary role in the spatial pattern of the AET change, and the relative importance of such explanatory variables may change over space.


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.



Persistent Identifier

Supplementary Data.pdf (65 kB)
Supplementary data