Published In

Journal of Fluid Mechanics

Document Type

Article

Publication Date

8-30-2023

Subjects

Fluid mechanics, Turbulence -- Mathematical models

Abstract

The mean flow behaviour of a turbulent boundary layer over rough walls is expected to exhibit symmetries that govern the flow dynamics. In particular, when roughness elements are arranged in a spanwise symmetric manner, the mean flow above them should also exhibit spanwise symmetry. This symmetrical consideration has garnered substantial empirical support. We conduct direct numerical simulations (DNS) of flow over aligned cube arrays to test such symmetry considerations further. We vary the surface coverage density from 0.25 % to 6.25 %, and employ an averaging time of about 100 large-eddy turnover times, which is longer than the typical averaging time in prior DNS studies of rough-wall boundary layers. The results suggest the presence of spanwise asymmetry in the mean flow. Specifically, we observe the development of a prominent secondary vortex on one side of the cubical roughness, accompanied by a relatively smaller secondary vortex on the other side. This asymmetry becomes most pronounced when the surface coverage density is approximately 0.59 %, and diminishes as the coverage density approaches either a low or a high value. We also establish that this mean flow asymmetry is robust across variations in the domain size, the initial condition, and the placement of the cubes in the spanwise direction.

Rights

Creative Commons Creative Common License - CCCreative Common License - BY This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © The Author(s), 2023. Published by Cambridge University Press

DOI

10.1017/jfm.2023.590

Persistent Identifier

https://archives.pdx.edu/ds/psu/43567

Included in

Engineering Commons

Share

COinS