First Advisor

Raúl Bayóan Cal

Date of Publication

Summer 8-28-2013

Document Type


Degree Name

Master of Science (M.S.) in Mechanical Engineering


Mechanical and Materials Engineering




Wind power plants -- Power supply -- Research, Wind energy conversion systems -- Design and construction -- Research, Wind turbines -- Design and construction -- Research



Physical Description

1 online resource (vii, 49 pages)


This thesis presents the results of wind tunnel experiments performed for various model wind turbine arrays. The aim is to understand how siting affects power output. To optimize wind farm efficiency the experiments vary the parameters of the model wind turbines and the layout of the wind turbine array. The parameters include the alignment, height, spacing, and the rotational direction of the model wind turbines. These experiments employ mechanical torque sensors to simultaneously measure the torque and rotor angular velocity, which yields a direct measurement of the fluid mechanical power extracted by the turbine at multiple locations. For a 4 × 3 array, the power is calculated at the center turbine in each of the rows. Variations in wind farm efficiency ranging from 55% to 90% are observed between the 13 different layouts tested. Modifications to the layout of the wind turbine array clearly affects the power output of the wind turbines downstream. The results of such experiments highlight the importance of studying the relationship between wind farm layout and power output.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier