First Advisor

F. Badi'i

Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Electrical and Computer Engineering


Electrical Engineering




Parallel processing (Electronic computers), Real-time data processing, Image processing -- Digital techniques, Algorithms, Pattern recognition systems, Trees (Graph theory) -- Data processing



Physical Description

1 online resource (68 p.)


Two related image processing problems are addressed in this thesis. First, the problem of identification of 3-D objects in real time is explored. An algorithm to solve this problem and a hardware system for parallel implementation of this algorithm are proposed. The classification scheme is based on the "Invariant Numerical Shape Modeling" (INSM) algorithm originally developed for 2-D pattern recognition such as alphanumeric characters. This algorithm is then extended to 3-D and is used for general 3-D object identification. The hardware system is an SIMD parallel processor, designed in bit slice fashion for expandability. It consists of a library of images coded according to the 3-D INSM algorithm and the SIMD classifier which compares the code of the unknown image to the library codes in a single clock pulse to establish its identity. The output of this system consists of three signals: U, for unique identification; M, for multiple identification; and N, for non-identification of the object.

Second, the problem of real time image compaction is addressed. The quad tree data structure is described. Based on this structure, a parallel processor with a tree architecture is developed which is independent of the data entry process, i.e., data may be entered pixel by pixel or all at once. The hardware consists of a tree processor containing a tree generator and three separate memory arrays, a data transfer processor, and a main memory unit. The tree generator generates the quad tree of the input image in tabular form, using the memory arrays in the tree processor for storage of the table. This table can hold one picture frame at a given time. Hence, for processing multiple picture frames the data transfer processor is used to transfer their respective quad trees from the tree processor memory to the main memory. An algorithm is developed to facilitate the determination of the connections in the circuit.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier