First Advisor

Douglas V. Hall

Term of Graduation

Fall 2007

Date of Publication


Document Type


Degree Name

Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering


Electrical and Computer Engineering




Adaptive computing systems, Self-adaptive software, Self-stabilization (Computer science), Soft computing



Physical Description

1 online resource (2, xvi, 224 pages)


For high security and safety applications as well as general purpose applications, it is necessary to have ultra reliable computing systems. This dissertation describes our system of self-testable and self-repairable digital devices, especially, EPLDs (Electrically Programmable Logic Devices). In addition to significantly improving the reliability of digital systems, our self-healing and re-configurable system design with added repair capability can also provide higher yields, lower testing costs, and faster time-to-market for the semiconductor industry.

The digital system in our approach is composed of blocks, which realize combinational and sequential circuits using GALs (Generic Array Logic Devices). We describe three techniques for fault-locating and fault-repairing in these devices. The methodology we used for evaluation of these methods and a comparison with devices that have no self-repair capability was simulation of the self-repair algorithms. Our simulations show that the lifetime for a GAL-based EPLD that uses our multiple self-repairing methods is longer than the lifetime of a GAL-based EPLD that uses a single self-repair method or no self-repair method. Specifically, our work demonstrates that the lifetime of a GAL can be increased by adding extra columns in the AND array of a GAL and extra output ORs in a GAL. It also gives information on how many extra columns and extra ORs a GAL needs and which self-repairing method should be used to guarantee a given lifetime. Thus, we can estimate an ideal point, where the maximum reliability can be reached with the minimum cost.


In Copyright. URI:

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL.

Persistent Identifier