Published In

Parasites & Vectors

Document Type

Article

Publication Date

7-24-2020

Abstract

Background: The pork tapeworm, Taenia solium, is a serious public health problem in rural low-resource areas of Latin America, Africa and Asia, where the associated conditions of nuerocysticercosis (NCC) and porcine cysticercosis cause substantial health and economic harms. An accurate and validated transmission model for T. solium would serve as an important new tool for control and elimination, as it would allow for comparison of available intervention strategies, and prioritization of the most effective strategies for control and elimination efforts.

Methods: We developed a spatially-explicit agent-based model (ABM) for T. solium (“CystiAgent”) that differs from prior T. solium models by including a spatial framework and behavioral parameters such as pig roaming, open human defecation, and human travel. In this article, we introduce the structure and function of the model, describe the data sources used to parameterize the model, and apply sensitivity analyses (Latin hypercube sampling-partial rank correlation coefficient (LHS-PRCC)) to evaluate model parameters.

Results: LHS-PRCC analysis of CystiAgent found that the parameters with the greatest impact on model uncertainty were the roaming range of pigs, the infectious duration of human taeniasis, use of latrines, and the set of “tuning” parameters defining the probabilities of infection in humans and pigs given exposure to T. solium.

Conclusions: CystiAgent is a novel ABM that has the ability to model spatial and behavioral features of T. solium transmission not available in other models. There is a small set of impactful model parameters that contribute uncertainty to the model and may impact the accuracy of model projections. Field and laboratory studies to better understand these key components of transmission may help reduce uncertainty, while current applications of CystiAgent may consider calibration of these parameters to improve model performance. These results will ultimately allow for improved interpretation of model validation results, and usage of the model to compare available control and elimination strategies for T. solium.

Rights

© The Author(s) 2020. This article is licensed under a . Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated.

DOI

10.1186/s13071-020-04226-8

Persistent Identifier

https://archives.pdx.edu/ds/psu/34273

Share

COinS