Presentation Title

Stormwater Treatment Effectiveness of Established Bioretention Facilities in Portland, Oregon

Abstract

Bioretention systems are commonly used to treat and detain stormwater runoff and help mitigate for many negative effects of urbanization. Despite the widespread use of bioretention systems, few field-based studies have assessed how these facilities affect water quality many years after installation. The goal of this project is to assess the pollution reduction effectiveness of lined bioretention facilities that have been in use and functioning for 4-8 years. To meet this objective, this project measured water quality characteristics of stormwater flowing into and out of seven facilities installed throughout Portland, Oregon during real storm events. Stormwater grab samples were taken over a 2-year period during the fall, winter, and spring. Results showed decreased concentrations of total suspended solids (TSS; 94%), ammonia (85%), total copper (59%), total zinc (80%), and dissolved zinc (41%). Results for dissolved copper indicated an overall increase in outflow concentrations of 23%, however variability between facilities was high. These results support other similar findings showing that TSS is effectively reduced by bioretention facilities, even after 4-8 years of use. However, based on this study, effective TSS removal by bioretention facilities does not necessarily equate to equally effective treatment of other pollutants, especially orthophosphate and nitrate, which increased in outflow from the bioretention facilities by 141% and 2070%, respectively. Results of this study indicate that additional research is necessary to determine the significance of the observed increase in nutrients, understand the underlying mechanisms, and test possible design modifications to improve nitrate and orthophosphate removal.

Subjects

Sustainable development, Water quality

Persistent Identifier

https://archives.pdx.edu/ds/psu/33818

Rights

© Copyright the author(s)

IN COPYRIGHT:
http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DISCLAIMER:
The purpose of this statement is to help the public understand how this Item may be used. When there is a (non-standard) License or contract that governs re-use of the associated Item, this statement only summarizes the effects of some of its terms. It is not a License, and should not be used to license your Work. To license your own Work, use a License offered at https://creativecommons.org/

This document is currently not available here.

Share

COinS
 

Stormwater Treatment Effectiveness of Established Bioretention Facilities in Portland, Oregon

Bioretention systems are commonly used to treat and detain stormwater runoff and help mitigate for many negative effects of urbanization. Despite the widespread use of bioretention systems, few field-based studies have assessed how these facilities affect water quality many years after installation. The goal of this project is to assess the pollution reduction effectiveness of lined bioretention facilities that have been in use and functioning for 4-8 years. To meet this objective, this project measured water quality characteristics of stormwater flowing into and out of seven facilities installed throughout Portland, Oregon during real storm events. Stormwater grab samples were taken over a 2-year period during the fall, winter, and spring. Results showed decreased concentrations of total suspended solids (TSS; 94%), ammonia (85%), total copper (59%), total zinc (80%), and dissolved zinc (41%). Results for dissolved copper indicated an overall increase in outflow concentrations of 23%, however variability between facilities was high. These results support other similar findings showing that TSS is effectively reduced by bioretention facilities, even after 4-8 years of use. However, based on this study, effective TSS removal by bioretention facilities does not necessarily equate to equally effective treatment of other pollutants, especially orthophosphate and nitrate, which increased in outflow from the bioretention facilities by 141% and 2070%, respectively. Results of this study indicate that additional research is necessary to determine the significance of the observed increase in nutrients, understand the underlying mechanisms, and test possible design modifications to improve nitrate and orthophosphate removal.