Title

A Computational Method for Earthquake Cycles within Anisotropic Media

Published In

Geophysical Journal International

Document Type

Citation

Publication Date

11-1-2019

Abstract

We present a numerical method for the simulation of earthquake cycles on a 1-D fault interface embedded in a 2-D homogeneous, anisotropic elastic solid. The fault is governed by an experimentally motivated friction law known as rate-and-state friction which furnishes a set of ordinary differential equations which couple the interface to the surrounding volume. Time enters the problem through the evolution of the ordinary differential equations along the fault and provides boundary conditions for the volume, which is governed by quasi-static elasticity. We develop a time-stepping method which accounts for the interface/volume coupling and requires solving an elliptic partial differential equation for the volume response at each time step. The 2-D volume is discretized with a second-order accurate finite difference method satisfying the summation-by-parts property, with boundary and fault interface conditions enforced weakly. This framework leads to a provably stable semi-discretization. To mimic slow tectonic loading, the remote side-boundaries are displaced at a slow rate, which eventually leads to earthquake nucleation at the fault. Time stepping is based on an adaptive, fourth-order Runge–Kutta method and captures the highly varying timescales present. The method is verified with convergence tests for both the orthotropic and fully anisotropic cases. An initial parameter study reveals regions of parameter space where the systems experience a bifurcation from period one to period two behaviour. Additionally, we find that anisotropy influences the recurrence interval between earthquakes, as well as the emergence of aseismic transients and the nucleation zone size and depth of earthquakes.

Description

© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society.

Locate the Document

http://doi.org/10.1093/gji/ggz320

DOI

10.1093/gji/ggz320

Persistent Identifier

https://archives.pdx.edu/ds/psu/30586

Share

COinS