Title

Estimating Posterior Quantity of Interest Expectations in a Multilevel Scalable Framework

Published In

Numerical Linear Algebra with Applications

Document Type

Citation

Publication Date

12-21-2020

Abstract

Scalable approaches for uncertainty quantification are necessary for characterizing prediction confidence in large‐scale subsurface flow simulations with uncertain permeability. To this end we explore a multilevel Monte Carlo approach for estimating posterior moments of a particular quantity of interest, where we employ an element‐agglomerated algebraic multigrid (AMG) technique to generate the hierarchy of coarse spaces with guaranteed approximation properties for both the generation of spatially correlated random fields and the forward simulation of Darcy's law to model subsurface flow. In both these components (sampling and forward solves), we exploit solvers that rely on state‐of‐the‐art scalable AMG. To showcase the applicability of this approach, numerical tests are performed on two 3D examples—a unit cube and an egg‐shaped domain with an irregular boundary—where the scalability of each simulation as well as the scalability of the overall algorithm are demonstrated.

Rights

Copyright © 1999-2021 John Wiley & Sons, Inc. All rights reserved

Locate the Document

https://doi.org/10.1002/nla.2352

DOI

10.1002/nla.2352

Persistent Identifier

https://archives.pdx.edu/ds/psu/35159

Share

COinS