A West Coast Estuarine Case Study: A Novel, Predictive Approach to Monitor Estuarine Eutrophication

Start Date

4-4-2023 4:00 PM

End Date

4-4-2023 6:00 PM

Abstract

Estuaries are wetlands where freshwater from streams mixes with salt water from sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise,and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring.

This project attempts to use satellite data and correlate metrics with in situ observations, collected at five U.S. west coast estuaries. The 5 west coast estuaries under study were: San Francisco Estuary, Elkhorn Slough, Tijuana Bay, South Slough, and Padilla Bay. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from estuaries was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years.

Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 0 to 44%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs and four machine learning(ML) model algorithms were trained, validated, and tested for 10 OPs. The OPs saw improved R2 values in the range of 96.1% to 99%.

This novel approach can be used to get periodic analysis of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Subjects

Conservation biology, GIS / modeling, Habitat restoration, Land/watershed management, Water quality

Persistent Identifier

https://archives.pdx.edu/ds/psu/40470

Rights

© Copyright the author(s)

IN COPYRIGHT:
http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DISCLAIMER:
The purpose of this statement is to help the public understand how this Item may be used. When there is a (non-standard) License or contract that governs re-use of the associated Item, this statement only summarizes the effects of some of its terms. It is not a License, and should not be used to license your Work. To license your own Work, use a License offered at https://creativecommons.org/

This document is currently not available here.

Share

COinS
 
Apr 4th, 4:00 PM Apr 4th, 6:00 PM

A West Coast Estuarine Case Study: A Novel, Predictive Approach to Monitor Estuarine Eutrophication

Estuaries are wetlands where freshwater from streams mixes with salt water from sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise,and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring.

This project attempts to use satellite data and correlate metrics with in situ observations, collected at five U.S. west coast estuaries. The 5 west coast estuaries under study were: San Francisco Estuary, Elkhorn Slough, Tijuana Bay, South Slough, and Padilla Bay. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from estuaries was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years.

Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 0 to 44%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs and four machine learning(ML) model algorithms were trained, validated, and tested for 10 OPs. The OPs saw improved R2 values in the range of 96.1% to 99%.

This novel approach can be used to get periodic analysis of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.