First Advisor

Robert Strongin

Date of Publication

Summer 1-10-2014

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Chemistry

Department

Chemistry

Language

English

Subjects

Homocysteine -- Research, Biochemical markers -- Diagnostic use

DOI

10.15760/etd.1540

Physical Description

1 online resource (xii, 127 pages)

Abstract

Increased blood plasma concentrations of the aminothiol homocysteine (Hcy) are associated with a variety of disease states including those which cause impaired renal function, many forms of cardiovascular disease, and neurodegenerative diseases such as Alzheimer's. Therefore, Hcy has the potential to be a significant diagnostic biomarker. Routine monitoring of Hcy plasma concentration is encumbered by the time and resources required to quantify Hcy using currently accepted instrumental analysis methods. As part of the continuing effort to develop a quick, reliable, inexpensive, and user-friendly test to quantify Hcy at the point of care, we have designed a series of novel colorimetric and fluorescent chemical probes based on bridged viologen structures. The absorbance at 540 nm for the para-bridged bis-nitrile viologen probe (pCN) was found to be proportional to the concentration of Hcy analyte, with LOD = 2.17 μM and LOQ = 6.10 μM where unhealthy Hcy plasma concentrations are > 15 μM. The mechanism of reactivity between pCN and Hcy encompasses a dynamic set of reactions which involve pimerization of radical probe species and thioether adduct formation of pCN with Hcy. Preliminary results with fluorometric analogs of the bridged viologen probes are also presented.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/10561

Share

COinS