First Advisor

Robert Perkins

Date of Publication

Winter 3-31-2016

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Geology

Department

Geology

Language

English

Subjects

Volcanic ash, tuff, etc. -- Oregon -- Willamette River Valley, Soils -- Arsenic content -- Oregon -- Willamette River Valley, Groundwater -- Pollution -- Oregon -- Willamette River Valley, Soil pollution -- Oregon -- Willamette River Valley

DOI

10.15760/etd.2753

Physical Description

1 online resource (vii, 94 pages)

Abstract

Volcanic tuffs and tuffaceous sediments are frequently associated with elevated As groundwater concentrations even though their bulk As contents (~ 5 mg kg-1; Savoie, 2013) are only marginally greater than the average crustal abundance of 4.8 mg g-1 (Rudnick & Gao, 2003). Thus, As mobilization must be facilitated by conditions particular to these rocks. Alkaline desorption, anionic competition, reactive glass dissolution, and reductive dissolution of iron oxides are proposed processes of As release from volcanic rocks. Geogenic As contamination of groundwater in the southern Willamette Valley in western Oregon has been well-documented since the early 1960s, and previous studies have identified the Little Butte Volcanics Series and Fisher and Eugene Formations as the source of As contamination.

This study examines 19 samples from 10 units of ash flow tuffs and tuffaceous sediments within the Fisher Formation and Little Butte Volcanics Series, representing a range of weathering and devitrification, to determine conditions of mobilization and mineralogical constraints that control As release into solution. Leachate studies were conducted over a range of pH from 7 to 11, phosphate concentrations from 10 μM to 100 mM, and in time series from 4 to 196 hours. Results demonstrate that silicic volcanic tuffs are capable of mobilizing As in concentrations above regulatory limits at pH conditions produced naturally by the tuffs (pH 8-9) or with moderate concentrations of P (10-100 μM). Alteration products, e.g. zeolites and clays, appear to be the primary host phases for mobile As. Samples that do not contain these alteration products tend to produce concentrations of As well below regulatory limits and often below the instrument detection limits of this study. The type of alteration may influence As mobilization: tuffs containing more clays tend to mobilize As through surficial desorption, and tuffs containing more zeolites tend to mobilize As by dissolution or formation of colloids. Additionally, one volcaniclastic sample demonstrates that extremely elevated concentrations of As, up to 1000 μg/L are possible as a result of oxidative dissolution of As-bearing sulfide phases.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/17037

Included in

Geology Commons

Share

COinS