Sponsor
Portland State University. Department of Mechanical and Materials Engineering
First Advisor
Alexander J. Hunt
Date of Publication
Spring 7-16-2018
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Mechanical Engineering
Department
Mechanical and Materials Engineering
Language
English
Subjects
Neural networks (Computer science), Equilibrium (Physiology), Human locomotion
DOI
10.15760/etd.6383
Physical Description
1 online resource (viii, 48 pages)
Abstract
Human balance control is a complex feedback system that must be adaptable and robust in an infinitely varying external environment. It is probable that there are many concurrent control loops occurring in the central nervous system that achieve stability for a variety of postural perturbations. Though many engineering models of human balance control have been tested, no models of how these controllers might operate within the nervous system have yet been developed. We have focused on building a model of a proprioceptive feedback loop with simulated neurons. The proprioceptive referenced portion of human balance control has been successfully modeled by a PD controller with a time delay and output torque positive feedback. For this model, angular position is measured at the ankle and corrective torque is applied about the joint to maintain a vertical orientation. In this paper, we construct a neural network that performs addition, subtraction, multiplication, differentiation and signal filtering to demonstrate that a simulated biological neural system based off of the engineering control model is capable of matching human test subject dynamics.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/26192
Recommended Citation
Hilts, Wade William, "Emulating Balance Control Observed in Human Test Subjects with a Neural Network" (2018). Dissertations and Theses. Paper 4499.
https://doi.org/10.15760/etd.6383