Document Type

Article

Publication Date

3-14-2018

Abstract

Taxonomy is a scientific discipline that has provided the universal naming and classification system of biodiversity for centuries and continues effectively to accommodate new knowledge. A recent publication by Garnett and Christidis (Garnett ST, Christidis L. Taxonomy anarchy hampers conservation. Nature. 2017; 546(7656):25±27. https://doi.org/10.1038/546025a) expressed concerns regarding the difficulty that taxonomic changes represent for conservation efforts and proposed the establishment of a system to govern taxonomic changes. Their proposal to "restrict the freedom of taxonomic action" through governing subcommittees that would "review taxonomic papers for compliance" and their assertion that "the scientific community's failure to govern taxonomy threatens the effectiveness of global efforts to halt biodiversity loss, damages the credibility of science, and is expensive to society" are flawed in many respects. They also assert that the lack of governance of taxonomy damages conservation efforts, harms the credibility of science, and is costly to society. Despite its fairly recent release, Garnett and Christidis' proposition has already been rejected by a number of colleagues. Herein, we contribute to the conversation between taxonomists and conservation biologists aiming to clarify some misunderstandings and issues in the proposition by Garnett and Christidis.

Placing governance over the science of taxonomy blurs the distinction between taxonomy and nomenclature. Garnett and Christidis’s proposal is far-reaching but represents a narrow perspective of taxonomy, as utilized by conservation, and reflects an increasingly broad misunderstanding throughout biology of the scientific basis of taxonomy, formalized nomenclature, and the relationship between them. This trend may have resulted from the attenuation of instruction in taxonomic principles and, in particular, nomenclature at many universities, in part because of a shift in research priorities away from taxonomy.

Garnett and Christidis assert that an “assumption that species are fixed entities underpins every international agreement on biodiversity conservation.” This assumption demonstrates a fundamental misunderstanding of taxonomy and the evolving view of what species represent. The essential features of science include documenting natural patterns and processes, developing and testing hypotheses, and refining existing ideas and descriptions of nature based on new data and insights. Taxonomy, the science of recognizing and delimiting species, adheres to these fundamental principles. Discoveries of new organisms together with advances in methodology continue unabated, leading to a constant reevaluation of the boundaries between taxonomic entities. Species (and higher taxa) comprise related organisms that may be clustered together differently depending on which sets of criteria are emphasized. Hey et al. acknowledge “the inherent ambiguity of species in nature” but point out that “species-related research and conservation efforts can proceed without suffering from, and without fear of, the ambiguity of species.” Through taxonomic research, our understanding of biodiversity and classifications of living organisms will continue to progress. Any system that restricts such progress runs counter to basic scientific principles, which rely on peer review and subsequent acceptance or rejection by the community, rather than third-party regulation. Thiele and Yeates cautioned that such a system “could lead to authoritarianism and a stifling of innovative taxonomic viewpoints. No other hypothesis-driven field of science would accept such a straitjacket”.

Taxonomy and associated nomenclature are not without problems. Even with a common set of facts, alternative interpretations of how to classify organisms can lead to differing classifications. However, the science of taxonomy is increasingly rigorous, which can improve the foundation for targeted legislative action regarding species. Taxonomic instability does not affect all taxonomic groups equally. Garnett and Christidis provide examples from mammals and birds, which collectively represent a small fraction (

Description

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

DOI

10.1371/journal.pbio.2005075

Persistent Identifier

http://archives.pdx.edu/ds/psu/25356

Included in

Biology Commons

Share

COinS