Published In

The Journal of Experimental Biology

Document Type

Post-Print

Publication Date

8-10-2020

Abstract

Annual killifish survive in temporary ponds by producing drought-tolerant embryos that can enter metabolic dormancy (diapause). Survival of dehydration stress is achieved through severe reduction of evaporative water loss. We assessed dehydration stress tolerance in diapausing and developing embryos. We measured oxygen consumption rates under aquatic and aerial conditions to test the hypothesis that there is a trade-off between water retention and oxygen permeability. Diapausing embryos survive dehydrating conditions for over 1.5 years, and post-diapause stages can survive over 100 days. Diapausing embryos respond to dehydration stress by increasing oxygen consumption rates while post-diapause embryos exhibit the same or reduced rates compared to aquatic embryos. Thus, water retention does not always limit oxygen diffusion. Aerial incubation coupled with hypoxia causes some embryos to arrest development. The observed stage-specific responses are consistent with an intrinsic bet-hedging strategy in embryos that would increase developmental variation in a potentially adaptive manner.

Rights

This is an accepted manuscript originally published 2020 by The Company of Biologists Ltd, copyright the authors. Find the original https://doi.org/10.1242/jeb.231985

DOI

10.1242/jeb.231985

Persistent Identifier

https://archives.pdx.edu/ds/psu/34128

Available for download on Sunday, August 01, 2021

Included in

Biology Commons

Share

COinS