Published In

Plos One

Document Type


Publication Date



High-resolution non-invasive cetacean tagging systems can be used to investigate the influence of habitat characteristics and management factors on behavior by quantifying activity levels and distance traveled by bottlenose dolphins (Tursiops truncatus and Tursiops aduncus) in accredited zoos and aquariums. Movement Tags (MTags), a bio-logging device, were used to record a suite of kinematic and environmental information outside of formal training sessions as part of a larger study titled “Towards understanding the welfare of cetaceans in zoos and aquariums” (colloquially called the Cetacean Welfare Study). The purpose of the present study was to explore if and how habitat characteristics, environmental enrichment programs, and training programs were related to the distance traveled and energy expenditure of dolphins in accredited zoos and aquariums. Bottlenose dolphins in accredited zoos and aquariums wore MTags one day per week for two five-week data collection periods. Overall dynamic body acceleration (ODBA), a proxy for energy expenditure, and average distance traveled per hour (ADT) of 60 dolphins in 31 habitats were examined in relation to demographic, habitat, and management factors. Participating facilities were accredited by the Alliance for Marine Mammal Parks and/or Aquariums and the Association of Zoos & Aquariums. Two factors were found to be related to ADT while six factors were associated with ODBA. The results showed that enrichment programs were strongly related to both ODBA and ADT. Scheduling predictable training session times was also positively associated with ADT. The findings suggested that habitat characteristics had a relatively weak association with ODBA and were not related to ADT. In combination, the results suggested that management practices were more strongly related to activity levels than habitat characteristics.


Copyright: © 2021 Lauderdale et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Included in

Biology Commons