Published In

Limnology and Oceanography

Document Type


Publication Date



Planktonic eukaryotes -- Research


The Laurentian Great Lakes provide economic support to millions of people, drive biogeochemical cycling, and are an important natural laboratory for characterizing the fundamental components of aquatic ecosystems. Small phytoplankton are important contributors to the food web in much of the Laurentian Great Lakes. Here, for the first time, we reveal and quantify eight phenotypically distinct picophytoplankton populations across the Lakes using a multilaser flow cytometry approach, which distinguishes cells based on their pigment phenotype. The distributions and diversity of picophytoplankton flow populations varied across lakes and depths, with Lake Erie standing out with the highest diversity. By sequencing sorted cells, we identified several distinct lineages of Synechococcales spanning Subclusters 5.2 and 5.3. Distinct genotypic clusters mapped to phenotypically similar flow populations, suggesting that there may not be a clear one-to-one mapping between genotypes and phenotypes. This suggests genome-level differentiation between lakes but some degree of phenotypic convergence in pigment characteristics. Our results demonstrate that ecological selection for locally adapted populations may outpace homogenization by physical transport in this interconnected system. Given the reliance of the Lakes on in situ primary production as a source for organic carbon, this work sets the foundation to test how the community structure of small primary producers corresponds to biogeochemical and food web functions of the Great Lakes and other freshwater systems.


Copyright (c) 2023 The Authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Locate the Document




Persistent Identifier

Included in

Biology Commons