Published In

Journal of Physical Oceanography

Document Type


Publication Date



Harmonic analysis, Tsunamis -- Hawaiian Ridge, Tides


The interaction of the dominant semidiurnal M2 internal tide with the large-scale subtidal flow is examined in an ocean model by propagating the tide through an ensemble of background fields in a domain centered on the Hawaiian Ridge. The background fields are taken from the Simple Ocean Data Assimilation (SODA) ocean analysis, at 2-month intervals from 1992 through 2001. Tides are computed with the Primitive Equation Z-coordinate Harmonic Analysis of Tides (PEZ-HAT) model by 14-day integrations using SODA initial conditions and M2 tidal forcing. Variability of the tide is found to occur primarily as the result of propagation through the nonstationary background fields, rather than via generation site variability. Generation of incoherent tidal variability is mapped and shown to occur mostly in association with waves generated at French Frigate Shoals scattering near the Musicians Seamounts to the north of the ridge. The phase-coherent internal tide loses energy at a domain-average rate of 2 mW m−2 by scattering into the nonstationary tide. Because of the interference of waves from multiple generation sites, variability of the internal tide is spatially inhomogeneous and values of the scattering rate 10 times larger occur in localized areas. It is estimated that 20% of the baroclinic tidal energy flux is lost by adiabatic scattering (refraction) within 250 km of the ridge, a value regarded as a lower bound because of the smoothed nature of the SODA fields used in this study.


This is the publisher's final PDF. © Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or



Persistent Identifier