Published In

Scientific Reports

Document Type


Publication Date



Commercial products -- Testing, Flavoring essences -- Analysis, Toxological chemistry, Tobacco industry


Thousands of electronic cigarette refill fluids are commercially available. The concentrations of nicotine and the solvents, but not the flavor chemicals, are often disclosed on product labels. The purpose of this study was to identify and quantify flavor chemicals in 39 commercial refill fluids that were previously evaluated for toxicity. Twelve flavor chemicals were identified with concentrations ≥1 mg/ml: cinnamaldehyde, menthol, benzyl alcohol, vanillin, eugenol, p-anisaldehyde, ethyl cinnamate, maltol, ethyl maltol, triacetin, benzaldehyde, and menthone. Transfer of these flavor chemicals into aerosols made at 3V and 5V was efficient (mean transfer = 98%). We produced lab-made refill fluids containing authentic standards of each flavor chemical and analyzed the toxicity of their aerosols produced at 3V and 5V using a tank Box Mod device. Over 50% of the refill fluids in our sample contained high concentrations of flavor chemicals that transferred efficiently to aerosols at concentrations that produce cytotoxicity. When tested with two types of human lung cells, the aerosols made at 5V were generally more toxic than those made at 3V. These data will be valuable for consumers, physicians, public health officials, and regulatory agencies when discussing potential health concerns relating to flavor chemicals in electronic cigarette products.


Creative Commons License

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Locate the Document

Article is published in Scientific Reports and is available online at:



Persistent Identifier

pankow-41598_2018_25575_MOESM1_ESM.pdf (221 kB)
Supplementary information

Included in

Chemistry Commons