Published In

Inorganic Chemistry

Document Type

Post-Print

Publication Date

8-2011

Subjects

Isomerism, Chelates -- Synthesis, Contrast media (Diagnostic imaging), Magnetic resonance imaging, Ligands (Biochemistry), Lanthanide shift reagents

Abstract

Controlling the water exchange kinetics of macrocyclic Gd(3+) chelates, a key parameter in the design of improved magnetic resonance imaging (MRI) contrast media, may be facilitated by selecting the coordination geometry of the chelate. The water exchange kinetics of the mono- capped twisted square antiprism (TSAP) being much closer to optimal than those of the mono capped square antiprism (SAP) render the TSAP isomer more desirable for high relaxivity applications. Two systems have been developed that allow for selection of the TSAP coordination geometry in 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd(3+) chelates, both based upon the macrocycle nitrobenzyl cyclen. In this paper we report investigations into the stability and formation of these chelates. Particular focus is given to the production of two regioisomeric chelates during the chelation reaction. These regioisomers are distinguished by having the nitrobenzyl substituent either on a corner or on the side of the macrocyclic ring. The origin of these two regioisomers appears to stem from a conformation of the ligand in solution in which it is hypothesized that pendant arms lie both above and below the plane of the macrocycle. The conformational changes that then result during the formation of the intermediate H(2)GdL(+) chelate give rise to differing positions of the nitrobenzyl substituent depending upon from which face of the macrocycle the Ln(3+) approaches the ligand.

Description

This is the author’s version of a work that was accepted for publication in Inorganic Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Inorganic Chemistry, 5;50(17):7966-79. doi: 10.1021/ic2012843

© 2011 American Chemical Society

Locate the Document

https://doi.org/10.1021/ic2012843

DOI

10.1021/ic2012843

Persistent Identifier

https://archives.pdx.edu/ds/psu/31161

Included in

Chemistry Commons

COinS