Published In


Document Type


Publication Date



Machine learning, Self-optimizing systems


Feature generation aims to generate new and meaningful features to create a discriminative representation space. A generated feature is meaningful when the generated feature is from a feature pair with inherent feature interaction. In the real world, experienced data scientists can identify potentially useful feature-feature interactions, and generate meaningful dimensions from an exponentially large search space in an optimal crossing form over an optimal generation path. But, machines have limited human-like abilities. We generalize such learning tasks as self-optimizing feature generation. Self-optimizing feature generation imposes several under-addressed challenges on existing systems: meaningful, robust, and efficient generation. To tackle these challenges, we propose a principled and generic representation-crossing framework to solve self-optimizing feature generation. To achieve hashing representation, we propose a three-step approach: feature discretization, feature hashing, and descriptive summarization. To achieve reinforcement crossing, we develop a hierarchical reinforcement feature crossing approach. We present extensive experimental results to demonstrate the effectiveness and efficiency of the proposed method. The code is available at


© Copyright the author(s) 2024


This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in 2023 IEEE International Conference on Data Mining (ICDM) (pp. 748-757). IEEE.

Locate the Document




Persistent Identifier