Published In

Renewable Agriculture & Food Systems

Document Type


Publication Date



Sustainable agriculture, Environmental impact analysis, Biotechnological process monitoring


Agricultural biotechnology has been largely opposed by advocates in the sustainable agriculture movement, despite claims by the technology’s proponents that it holds the promise to deliver both production (economic) and environmental benefits, two legs of the sustainability stool. We argue in this paper that participants in this polarized debate are talking past each other because assumptions about biotechnology and sustainability remain simplistic and poorly defined. Genetically engineered (GE) herbicide-resistant and insect-resistant crop varieties are the most visible current forms of agricultural biotechnology, and thus the form of biotechnology that many in the sustainability movement react to. However, these crops represent a biotechnology option that has paid insufficient attention to the integrated and systemic requirements of sustainable agriculture. In particular, common definitions of sustainable agriculture reinforce the need to include consideration of socio-economic distributive or equity effects into any assessment of sustainability. However, the frameworks that have been proposed to assess the potential for GE crops to enhance sustainable agriculture generally neglect this essential socio-economic dimension. We present an analysis that augments the sustainability frameworks to include the full suite of environmental, economic and social impacts. A review of the latest science on each impact category reveals that crop biotechnology cannot be fully assessed with respect to fostering a more sustainable agriculture due to key gaps in evidence, especially for socio-economic distributive effects. While the first generation of GE crops generally has made progress in reducing agriculture’s environmental footprint and improving adopting farmers’ economic well-being, we conclude that these early products fall short of the technology’s capacity to promote a more sustainable agriculture because of the failure of those developing and promoting the technology to fully engage all stakeholders and address salient equity issues. To realize the sustainability potential of biotechnology will require fundamental changes in the way public and private research and technology development and commercialization are structured and operated. We identify new approaches in these areas that could make this powerful biological science more compatible with sustainable agriculture.


This is the publisher's final PDF. This paper was published in Renewable Agriculture & Food Systems (



Persistent Identifier