Published In

Journal of Water Resource and Protection

Document Type

Article

Publication Date

2018

Subjects

Water supply, Water -- Distribution

Abstract

Winter precipitation in two headwaters catchments (elevation ~1600 m) in the rain shadow of the Cascades volcanic arc in south-central Oregon normally falls as snow. However, in water year 2015, winter precipitation fell mainly as rain. An eight year study of the unconfined pumice aquifer allowed inter-annual comparison of groundwater recharge during the freshet and discharge during the growing season. During these water years precipitation ranged from 67% (WY2014) to 132% (WY2017) of the 30 year average, and included the rain dominated winter of WY2015 when precipitation during the water year was 98% of the 30 year average. Change in storage in the pumice aquifer was estimated from thickness of the pumice deposit and depth to water table from the ground surface. Measurements were made where 1) the pumice aquifer was exposed at the surface; 2) where the aquifer was partially eroded and overlain by either alluvium or lacustrine glassy silt to fine sand; 3) fens where the partially eroded aquifer was overlain by peat; and 4) monitoring wells drilled through the pumice aquifer into bedrock. In all settings, groundwater storage in the pumice aquifer following the rain-dominated winter of WY2015 was similar or less than storage following the drought of WY2014 when winter precipitation fell as snow. Storage at the end of WY2014 and WY2015 was the least observed in the eight year study. Winter-time rain during WY2015 produced runoff rather than storage in snow pack. Runoff was conveyed from the catchments by flow in stream reaches normally dry from late summer through the winter months. Rain-dominated winter precipitation stresses the perched pumice aquifer. Winter storms starting as rain and turning late to snow and ground-freezing temperatures lead to runoff during the next rain-dominated precipitation event. These patterns produced stream flow in channels that are commonly dry during the winter, reduced near-surface groundwater storage in the pumice aquifer, muted springtime freshet, and stressing of groundwater-dependent ecosystems, forage in meadows, and forest health.

Description

Creative Commons License

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

DOI

10.4236/jwarp.2018.104025

Persistent Identifier

http://archives.pdx.edu/ds/psu/25097

Share

COinS