Published In

Journal of Geography and Geology

Document Type


Publication Date



Coastal erosion -- Effect of global warming on, Coastal archaeology, Eolian processes


Three small subcells (Nehalem, Tillamook, and Netarts) totaling ~55 km shoreline length in the high-wave energy northern Oregon coast are evaluated for potential beach sand loss from sea level rise (SLR) of 0.5–1.0 m during the next century. The predicted erosion is based on beach sand displacement from the narrow beaches (average ~120 m width) to increased submarine accommodation spaces in the innermost-shelf (to 30 m water depth) and in the subcell estuaries (Tillamook Bay, Netarts Bay, and Nehalem Bay), following predicted near-future SLR. Beach sand sources from local rivers, paleo-shelf deposits, and/or sea cliff retreat are discriminated by distinctive heavy-mineral tracers. Modern beach sands in the study area are derived from river sand (~75 %) and paleo-shelf sand (~25 %). The supplies of paleo-shelf sand to the beaches have largely diminished in late-Holocene time. The river-enriched beach sands have been transported offshore to the inner-shelf (0–50 m water depth) to fill increasing accommodation space in the inner-shelf during latest-Holocene conditions of relative SLR (1.0 m ka-1). To evaluate the beach sand response to future SLR, representative beach profiles (n=17) and intervening beach segment distances were compiled to yield beach sand volumes above mean lower low water (MLLW) or shallower wave-cut platforms 'bedrock'. Across-shore cross-sectional areas, as averaged for each subcell, are as follows; Cannon Beach (304 m2), Tillamook (683 m2), and Netarts (227 m2). Littoral sand displacements to the adjacent innermost-shelf (to 30 m water depth) and the marine-dominated areas of the three estuaries are based on assumed vertical sand accretion rates of 1.0 m per century and a conservative value of 0.5 m per century. The filling of such submarine accommodation spaces will displace all active-beach sand reserves in all three subcells for either the 1.0 m or 0.5 m thickness accommodation space scenarios. Large beach sand deficits, primarily from the filling of offshore accommodation spaces, could cause further retreat of soft-shorelines, including barrier spit and beach plain/dune deposits, in the Tillamook subcell (150-280 m) and in the southern half of the Netarts subcell (370-770 m). The accommodation space approach used to predict beach sand volume loss from future SLR should have broad applicability in complex littoral systems worldwide.


Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


The data that supports this article is available in PDXScholar and can be found here: 10.15760/geology-data.01



Persistent Identifier

Included in

Geology Commons