First Advisor

Niles Lehman

Date of Award


Document Type


Degree Name

Bachelor of Science (B.S.) in Biochemistry and University Honors




Life -- Origin, RNA, Autocatalysis, Self-organizing systems




It is becoming increasingly evident that at some point, very early in the evolutionary history of terrestrial life, a nascent RNA based chemical system emerged and spontaneously self-organized into hierarchically complex network structures. Recently, it has been mathematically predicted that the architecture of this primitive, prebiotic RNA system (or something very similar) could plausibly provide both the infrastructure and the chemical mechanisms necessary to facilitate a transition to the DNA/protein based biochemical processes universally observed in contemporary biological systems. Complex systems give rise to emergent phenomena through the localized interactions of a large number of agents, at varying scales throughout a network. Moreover, these interactions can be classified topologically, from which it becomes possible to gain insight into the seemingly unpredictable behavior of these kinds of systems. Herein, we provide four examples of how the topological artifacts of local interactions between spontaneously self-assembling and self-organizing fragments of the Azoarcus ribozyme can inform both the emergence of decentralized organization and global population dynamics through modulation of kinetic parameters, thereby providing a rudimentary form of selection pressure through which the processes of chemical evolution may occur.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier