Document Type
Post-Print
Publication Date
6-11-2015
Subjects
Parallel systems, Random variables, Stochastic orders
Abstract
Let X-lambda 1, X-lambda 2, ... ,X-lambda n be independent non negative random variables with X-lambda i similar to F(lambda(i)t), i = 1, ... , n, where lambda(i) > 0, i = 1, ... , n and F is an absolutely continuous distribution. It is shown that, under some conditions, one largest order statistic X-n:n(lambda) n is smaller than another one X-n:n(theta) according to likelihood ratio ordering. Furthermore, we apply these results when F is a generalized gamma distribution which includes Weibull, gamma and exponential random variables as special cases.
DOI
10.1080/03610926.2014.985839
Persistent Identifier
http://archives.pdx.edu/ds/psu/16185
Citation Details
Subhash C. Kochar and Nuria Torrado, On stochastic comparisons of largest order statistics in the scale model, to appear in Communications in Statistics - Theory and Methods.
Description
Archived with author permission, this is the authors manuscript that has been accepted for publication by Taylor & Francis Publishing and embargoed.
The version of record can be found on the publisher web site.