Generalized Differentiation and Duality in Infinite Dimensions Under Polyhedral Convexity

Published In

Set-Valued and Variational Analysis

Document Type

Citation

Publication Date

8-8-2022

Abstract

This paper addresses the study and applications of polyhedral duality in locally convex topological vector (LCTV) spaces. We first revisit the classical Rockafellar’s proper separation theorem for two convex sets one of which is polyhedral and then present its LCTV extension replacing the relative interior by its quasi-relative interior counterpart. Then we apply this result to derive enhanced calculus rules for normals to convex sets, coderivatives of convex set-valued mappings, and subgradients of extended-real-valued functions under certain polyhedrality requirements in LCTV spaces by developing a geometric approach. We also establish in this way new results on conjugate calculus and duality in convex optimization with relaxed qualification conditions in polyhedral settings. Our developments contain significant improvements to a number of existing results obtained by Ng and Song (Nonlinear Anal. 55, 845–858, 12).

Rights

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.

DOI

10.1007/s11228-022-00647-y

Persistent Identifier

https://archives.pdx.edu/ds/psu/38374

Share

COinS