David H. Peyton

Date of Award


Document Type


Degree Name

Doctor of Philosophy (Ph.D.) in Environmental Sciences and Resources: Chemistry


Environmental Science and Management

Physical Description

3, xii, 239 leaves: ill. 28 cm.


Antigen-antibody reactions, Neurophysins, Ligands (Biochemistry) -- Analysis




The interaction between molecules is essential in a wide range of biological processes. A detailed knowledge of these interactions is necessary for understanding these processes. Among the systems that involve important interactions is the immune system. NMR spectroscopy has a large number of spectral parameters that were used in this work to study antibody-antigen interactions. These same parameters were also used to begin a structural analysis of a medium-sized protein, neurophysin, that has important interactions with neurohormones, and served here as a model antigen. A set of ligands differing in size and charge was designed and used to probe the binding site of anti-phosphocholine antibodies. These ligands ranged from small organic species to medium sized proteins. Amino acids, peptides and proteins were homogeneously linked to phenyl phosphocholine and analyzed by NMR techniques. Transferred nuclear Overhauser effect measurements were used to determine the conformation of bound ligands. The conformational change observed in some ligands was explained as either due to the antibody selecting one conformation that already exists, or the antibody binding inducing a conformational change. Titration data and detailed NMR analysis showed a more rigid M3C65 antibody fragment upon binding. In summary, with eight examples of ligands and four examples of antibodies studied by NMR, a spectrum of effects was seen, including a lock-and-key model and limited local induced fit. The contribution of the carrier molecule to antibody binding was in restricting the conformation of the ligand. Bigger ligands that are expected to be more immunogenic, showed less binding avidity as determined by immunological assays. Fluorinated ligands were synthesized to determine the kinetics of binding using 19F NMR spectra. Higher concentration of a fragment of the antibody M3C65 was analyzed to determine assignments of some residues in the combining site of the antibody. High resolution NMR techniques were used to assign resonances in neurophysin. The physiological role of neurophysin includes hormone storage and stabilization of oxytocin and vasopressin against proteolytic degradation within the posterior pituitary. Neurophysin is a 10 KD protein that dimerizes at high concentrations needed for NMR studies. An organic cosolvent was used to lower the dimerization constant, and hence inrease the spectral resolution. This permitted sequence-specific assignments that were then used to identify residues in the neurophysin-hormone binding site. Chemical shift differences and conformational changes were observed for the residues glutamate 47 and leucine 50. The 3₁₀ helix was further stabilized towards a more ideal helix upon hormone-analog peptide binding. Some of the residues contributing to the monomer-monomer interface were also assigned. Dimerization ill1duced chemical shift differences and conformational changes were observed for phenylalanine 35, threonine 38, and alanine 69. Tyrosine: 49 and phenylalanine 22 were affected but to a lesser extent. One characteristic of neurophysin in all studied cases was dynamic equilibrium between different folding states.


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier