First Advisor

Joseph Maser

Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Environmental Science and Resources


Environmental Sciences and Resources




Riparian areas -- Oregon -- John Day River Watershed -- Analysis, Watersheds -- Oregon, Riparian plants -- Oregon -- John Day River Watershed, Riparian ecology -- Oregon -- John Day River Watershed, Plant diversity -- Oregon -- John Day River Watershed



Physical Description

1 online resource (2, vi, 168 pages) : illustrations


I hypothesized that vegetation and physical environmental characteristics would differ between the upper and lower extents of the annually flooded riparian zone on the John Day River, and that relationships between species and environmental variables would display differences between these two zones. Vegetation, environmental variables, and relationships between them were assessed for the entire annually flooded riparian zone, and for the proposed upper and lower zones. Data were collected from 60 one-square-meter quadrats: 30 in each the upper and lower zones. Sites were randomly selected and located so that flood duration was roughly equal at all sites within each zone.

34 plant species were encountered: 25 in the upper zone, 27 in the lower zone. Wetland obligate and facultative wetland species groups and eight individual species accounted for statistically different percentages ofquadrat cover between zones. ANOSIM analysis identified two statistically distinct vegetation communities between the two zones.

Soil texture averaged 75.85% sand and 20.81% fines. Sand ranged between 36.69% and 95.55%. Fines ranged between 2.54% and 58.84%. A horizon depths and fine soil particle concentrations were greater in the upper zone. Coarser soils with more sand and gravel dominated the lower zone. All enviromnental variables studied, except pH, were highly variable throughout the study area. ANOSIM analysis results suggest that the upper and lower zones have distinct, statistically different physical environments from each other.

Regression analyses relating species quadrat cover to physical environmental variables were performed for the total, upper, and lower riparian zones. Numerous differences were identified between the upper and lower riparian zones that the riparian scale analyses did not represent accurately. There were ten instances in which the zone scale analyses identified a relationship in either the upper or lower zone, while the corresponding riparian scale analysis failed to identify any relationship.

The results of this study indicate that vegetation and the physical environment are statistically different between the upper and lower zones on this river, and that relationships between a given plant species and environmental variable can vary between zones. Future research and management efforts should consider and address the potential for such between-zone variation.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier