Kevin A. Reynolds

Date of Award

Fall 1-7-2015

Document Type


Degree Name

Doctor of Philosophy (Ph.D.) in Chemistry



Physical Description

1 online resource (xiii, 113 pages)


Fatty acids -- Synthesis, Enzyme inhibitors, Streptomyces coelicolor, Metabolites




Streptomyces coelicolor produces fatty acids for both primary metabolism and for production of the components of natural products such as undecylprodiginine. Primary metabolism makes the longer and predominantly branched-chain fatty acids, while undecylprodiginine utilizes shorter and almost exclusively straight chain fatty acids. The first step in fatty acid biosynthetic process is catalyzed by FabH (β-ketoacyl synthase III), which catalyzes a decarboxylative condensation of an acyl-CoA primer with malonyl-acyl carrier protein (ACP). The resulting 3-ketoacyl-ACP product is reduced by NADPH-dependent FabG into 3-hydroxyacyl-ACP, which is dehydrated by FabA to form enoyl-ACP. The NADH-dependent FabI (InhA) completes the cycle. Subsequent rounds of elongations in the pathways are catalyzed by the condensing enzyme FabF. For undecylprodiginine biosynthesis in S. coelicolor, homologues of the condensing enzymes (FabH and FabF) and the ACP (FabC) are encoded by redP, redR and redQ respectively in the red gene cluster. The genes encoding 3-ketoacyl-ACP reductase (FabG), 3-hydroxyacyl-ACP dehydratase (FabA), and enoyl-ACP reductase (FabI), are putatively shared between fatty acid and undecylprodigine biosynthesis, since the corresponding genes are not present within the red gene cluster of S. coelicolor. RedP is proposed to initiate biosynthesis of undecylprodiginine alkane chain by condensing an acetyl-CoA with a malonyl-RedQ, in contrast to FabH which process a broad range of acyl-CoA with malonyl-FabC. The 3-keto group of the resulting 3-ketoacyl-RedQ is then reduced to provide butyryl-RedQ, presumably by the type II FAS enzymes FabG, FabA and FabI. These enzymes would not differentiate between straight and branched-chain substrates, and have equal preference for FabC and RedQ ACPs. RedR would then catalyze four subsequent elongation steps with malonyl-RedQ, with appropriate 3-keto group processing after each step. The proposed role and substrate specificities of condensing enzymes RedP and FabH have not been investigated in S. coelicolor. The genes encoding FabG, FabA, and FabI have not been characterized in Streptomyces. Analysis of the S. coelicolor genome sequence has revealed the presence of one fabI gene (SCO1814, encoding an enoyl-ACP reductase), and three likely fabG genes (SCO1815, SCO1345, and SCO1346, encoding β-ketoacyl-ACP reductase).

In the current study the substrates specificities of both RedP and FabH were determined from assays using pairings of two acyl-CoA substrates (acetyl-CoA and isobutyryl-CoA) and two malonyl-ACP substrates (malonyl-RedQ and malonyl-FabC) (FabC is a dedicated ACP for fatty acid biosynthesis and RedQ for undecylprodiginine biosynthesis in S. coelicolor). For RedP, activity was only observed with a pairing of acetyl-CoA and malonyl-RedQ. No activity was observed with isobutyryl-CoA consistent with the proposed role for RedP and the observation that acetyl CoA-derived prodiginines predominate in S. coelicolor. Malonyl-FabC is not a substrate for RedP, indicating that ACP specificity is one of the factors that permit a separation between prodiginine and fatty acid biosynthetic processes. In contrast to RedP, FabH was active with all pairings but demonstrated the greatest catalytic efficiency with isobutyryl-CoA using malonyl-FabC. Lower catalytic efficiency was observed using an acetyl-CoA and malonyl-FabC pairing consistent with the observation that in streptomycetes, a broad mixture of fatty acids are biosynthesized, with those derived from branched chain acyl-CoA starter units predominating. Diminished but demonstrable FabH activity was also observed using malonyl-RedQ, with the same preference for isobutyryl-CoA over acetyl-CoA, completing biochemical and genetic evidence that in the absence of RedP this enzyme can also play a role in prodiginine biosynthesis, producing branched alkyl chain prodiginines.

The identification and characterization of both enzymes FabG and FabI was also carried out. A series of straight and branched-chain β-ketoacyl and enoyl substrates tethered to either NAC or ACP were synthesized and used to elucidate the functional role and substrate specificity of these enzymes. Kinetic analysis demonstrates that of the three S. coelicolor enzymes, SCO1815 and SCO1345 have NADPH-dependent β-ketoacyl-reductase activity, in contrast to SCO1346, which has NADH-dependent β-ketoacyl-reductase activity. Spectrophotometric assays revealed that all three FabGs are capable of utilizing both straight and branched-chain β-ketoacyl-NAC substrates. These results are consistent with FabGs role in fatty acid and undecylprodiginine biosynthesis, wherein it processes branched-chain for primary metabolism as well as straight-chain products for undecylprodiginine biosynthesis. LC/MS assays demonstrate that these FabG enzymes do not discriminate between primary metabolism ACP (FabC) and secondary metabolism ACP (RedQ) (except for SCO1345, which does not have any activity with RedQ). This relaxed substrate specificity allows these enzymes to process 3-ketoacyl-FabC substrates for fatty acid biosynthesis as well as 3-ketoacyl-RedQ substrates for undecylprodiginine biosynthesis. Similar to FabG, spectrophotometric and LC/MS assays were also carried out to elucidate the functional role and substrate specificity of S. coelicolor FabI. The kinetic analyses demonstrate that SCO1814 has NADH-dependent enoyl-ACP reductase activity. Spectrophotometric and LC/MS assays demonstrated that FabI does not differentiate between straight and branched-chain substrates, and has equal preference for FabC and RedQ ACPs. These observations provide experimental support for the hypothesis that these enzymes are shared and process the intermediates in the elongation cycle of both fatty acid and undecylprodiginine biosynthesis. In summary, these studies have demonstrated the activity of enzymes RedP, FabH, FabG and FabI (InhA) previously uncharacterized in S. coelicolor and clarified their role in fatty acid and undecylprodiginine biosynthesis.

Persistent Identifier

Included in

Chemistry Commons