Advisor

Christopher M. Monsere

Date of Award

Winter 2-9-2015

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Civil & Environmental Engineering

Department

Civil and Environmental Engineering

Physical Description

1 online resource (xi, 143 pages)

Subjects

Traffic signs and signals -- Oregon -- Portland, Roads -- Interchanges and intersections -- Oregon -- Portland -- Safety measures, Pedestrians -- Oregon -- Portland -- Safety measures, Signalized intersections -- Oregon -- Portland -- Safety measures

DOI

10.15760/etd.2197

Abstract

The safety at half-signalized intersections in Portland, Oregon is analyzed in this thesis using 10 years of crash history and analysis of video that was collected at a subset of intersections. A half-signalized intersection has a standard red-yellow-green traffic signal for automobiles on the major road, a stop sign for motorists on the minor road, and a pedestrian signal with actuation for pedestrians and/or bicyclists on the minor road. Although prevalent in Canada, this type of intersection control is not typically found in the United States because the MUTCD explicitly prohibits its use. Half-signal use is limited mostly to two cities in the Pacific Northwest. In Portland, Oregon there are forty-seven intersections where half-signals are used but the last installation was in 1986; Seattle has over 100 intersections with half-signals and installs these in new locations where warranted.

To explore the safety records of these intersections in Portland, crash data from 2002-2011 was analyzed. A total of 442 crashes over the ten-year period at half-signals were observed. Sixteen of these 442 crashes involved pedestrians. In the crashes involving pedestrians, significant differences were found between the approach street of the vehicle and whether the pedestrian or driver was at fault. In the crash error reports, it was found that significantly more of the crashes involving pedestrians were the fault of motorists departing from the minor road who collided with pedestrians crossing the major street. Further crash analysis at half-signals was performed by developing matched comparison groups of minor stop controlled and fully signalized intersections. Crash rates were 0.158 and 0.178 crashes per million entering vehicles for 3-leg and 4-leg half-signals and these rates did not differ significantly from the minor street stop controlled and signalized comparison groups. Results from the matched comparison showed that the half-signalized group had more rear-end crashes when compared with the minor stop controlled group. This was the only result that held significance when crash rates were considered. It was also observed that the minor stop controlled group had a higher proportion of angle crashes when compared with the half-signal group but this did not influence the crash severity. Pedestrian crashes were more prevalent in the half-signal group when compared with the fully-signalized group. Pedestrian volumes were not available which would be used to determine if this significant measure is a result of higher pedestrian use at half-signals.

In addition to crash analysis, video was captured at five half-signalized intersections totaling 180 hours. Traffic volumes, pedestrian and bicycle volumes, and signal actuations were collected over a twenty-four hour period. Over this twenty-four hour period the five intersections averaged daily counts of 18613 vehicles on the major street, 591 vehicles on the minor street, 263 pedestrians crossing the major street, 285 pedestrians crossing the minor street, 52 bicycles on the major street, 37 bicycles on the minor street, and 126 signal actuations. Twenty-four hour observations from each of the intersections were used to study conflicts and compliance. No conflicts were observed that reflect the left-turning from the minor street pedestrian crashes that were identified in the crash history. Compliance of the half-signal by vehicles and pedestrians was comparable to compliance at fully-signalized intersections found in other studies with one exception. Across the intersections where video was collected, consisting of four 4-leg intersections and one 3-leg intersection, seven left turn on red violations were observed which had a significant impact on the time after red that red light violations were made. It is hypothesized that at half-signals vehicles on the major street make a left turn on the red signal very late into the red phase because there is not a risk of colliding with a vehicle traveling on the minor street since traffic volumes on the minor street are comparably low. The observed left turn on red violations did not put pedestrians at risk since by that point into the signal pedestrians were already clear of the intersection.

Finally, a stop compliance logistic regression model was developed at four four-leg intersections to see what factors had an effect on minor street vehicle stop compliance. All 166 hours of video were used to observe vehicles that arrived at the half-signal during the pedestrian phase. The dependent variable collected was whether a vehicle came to an acceptable stop. Independent variables collected included the vehicle's queue position, if it was the peak school period, if there was a vehicle across the street on the minor road, if a vehicle was stopped at the signal on the major street, if a pedestrian was present when the vehicle arrived, and the movement that the vehicle made from the minor street. Independent variables used in the model included the vehicle's queue position, if a vehicle was stopped at the signal on the major street, if a pedestrian was present, and if the vehicle made a right turn at the signal. Pedestrian presence and right turning vehicles had a positive impact on stop compliance. Vehicles being further back in the queue and cars stopped at the signal on the major street had a negative impact on stop sign compliance. In the model, pedestrian presence had the largest positive impact on stop compliance. When pedestrians were present, a motorist on the minor street was four times more likely to stop at the sign.

Persistent Identifier

http://archives.pdx.edu/ds/psu/14575

Share

COinS