First Advisor

David H. Peyton

Date of Publication

Summer 9-18-2015

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Chemistry

Department

Chemistry

Language

English

Subjects

Triazoles -- Synthesis, Antimalarials -- Synthesis, Chloroquine

DOI

10.15760/etd.2503

Physical Description

1 online resource (xii, 158 pages)

Abstract

Malaria is considered as one of the most prevalent and debilitating diseases affecting humans. Plasmodium falciparum is the most virulent form of the parasite which developed resistance to several antimalarial drugs. Chloroquine is one of the most successful antimalarials developed that is safe, effective, and cheap. However, its use has been limited due to the emergence of drug resistance. Click chemistry, particularly, the copper(I)-catalyzed reaction between azides and alkynes has shown to have a cutting-edge advantage in medicinal chemistry by its reliability, selectivity and biocompatibility.

Triazole-based antimalarials were synthesized via copper(I)-catalyzed alkyne-azide cycloaddition reaction by modifying the aliphatic chains terminal of chloroquine. The compounds synthesized contain triazole ring directly connected to an aromatic ring or via a piperazine linker. When tested for their in vitro antimalarial activity against D6, Dd2 and 7G8 strains of P. falciparum, 12 out of 28 compounds showed better activity against chloroquine resistant strains. Particularly, PL403 and PL448 exhibited potent activity than chloroquine against CQ-resistant strains Dd2 and 7G8, with IC50 values of 12.8 & 14.5 nM, and 15.2 & 11 nM respectively.

The efficiency of synthesizing several triazole-based antimalarials have proven click chemistry to be fast and efficient reaction. Generally, para-substitutions and di-substitutions with electron-withdrawing groups were found to be beneficial for having better antimalarial activity for these group of click compounds. Moreover, the incorporation of piperazine linker has brought an enhanced antimalarial activity.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/15982

Share

COinS