Raj Solanki

Date of Award

Summer 7-7-2016

Document Type


Degree Name

Doctor of Philosophy (Ph.D.) in Applied Physics



Physical Description

1 online resource (x, 119 pages)


Nanowires, Frequency multipliers




Frequency multiplication is an effect that arises in electronic components that exhibit a non-linear response to electromagnetic stimuli. Barriers to achieving very high frequency response from electronic devices are the device capacitance and other parasitic effects such as resistances that arise from the device geometry and are in general a function of the size of the device. In general, smaller device geometries and features lead to a faster response to electromagnetic stimuli. It was posited that the small size of the silicon nanowires (SiNWs) would lead to small device capacitance and spreading resistance, thus making the silicon nanowires useful in generating microwave and terahertz radiation by frequency multiplication. To verify this hypothesis, silicon nanowires based devices were fabricated and investigated using two experimental setups. The setups were designed to allow the investigation of the nanowire based devices at low frequencies and at high frequencies. Both setups consisted of an RF/microwave source, filters, waveguide, and a spectrum analyzer. They also allowed the characterization of the samples with a semiconductor parameter analyzer. The first step in the investigation of the SiNW devices was to install them in the waveguides and perform Current-Voltage (I-V) sweeps using the semiconductor parameter analyzer. The devices that exhibited the non-linear I-V characteristics typical of diodes were further investigated by first exposing them to 70MHz and 500MHz frequencies in the low frequency setup and then to 50GHz microwaves in the high frequency setup. The response of the devices was captured with a spectrum analyzer. The results demonstrate that the non-linear effect of frequency multiplication is present in nanowire devices from DC to 100GHz. The HF setup provides a platform that with an appropriate detector can be used to detect harmonics of the SiNWs in sub-millimeter/THz region of the electromagnetic spectrum.

Persistent Identifier