First Advisor

Martin J. Streck

Date of Publication

Summer 8-11-2016

Document Type


Degree Name

Master of Science (M.S.) in Geology






Volcanic ash tuff etc. -- Eastern Oregon -- Analysis, Rhyolite -- Eastern Oregon, Stratigraphic geology -- Miocene, Volcanology -- Eastern Oregon



Physical Description

1 online resource (xiii, 175 pages)


Two mid-Miocene (16.5-15 Ma) rhyolite volcanic centers in eastern Oregon, the Buchanan rhyolite complex and Dooley Mountain rhyolite complex, were investigated to characterize eruptive units through field and laboratory analysis. Results of petrographic and geochemical analysis add to field observations to differentiate and discriminate the eruptive units. Additionally, new geochemical data are used to correlate stratigraphically younger and older basalt and ash-flow tuff units with regional eruptive units to constrain the eruptive periods with modern Ar-Ar age dates.

Previous work at the Buchanan rhyolite complex was limited to regional mapping (Piper et al., 1939; Greene et al., 1972) and brief mention of the possibility of multiple eruptive units (Walker, 1979). Observed stratigraphic relationships and geochemical analysis were used to identify eight distinct eruptive units and create a geologic map of their distribution. Slight differences in trace element enrichment are seen in mantle normalized values of Ba, Sr, P, Ti and Nd-Zr-Hf and are used to differentiate eruptive units. New geochemical analyses are used to correlate the overlying Buchanan ash-flow tuff (Brown and McLean, 1980) and two underlying mafic units to the Wildcat Creek ash-flow tuff (~15.9 Ma, Hooper et al., 2002) and flows of the Upper Steens Basalt (~16.57 Ma, Brueseke et al., 2007), respectively, bracketing the eruptive age of the Buchanan rhyolite complex to between ~16.5 and ~15.9 Ma (Brueseke et al., 2007; Hooper et al., 2002).

The Dooley Mountain rhyolite complex was thoroughly mapped by the U.S. Geological Survey (Evans, 1992) and geochemically differentiated in a previous Portland State University M.S. thesis (Whitson, 1988); however, discrepancies between published interpretations and field observations necessitated modern geochemical data and revisions to geologic interpretations. Field and laboratory studies indicate that the Dooley Mountain rhyolite complex consists of multiple eruptive units that were effusive domes and flows with associated explosive eruptions subordinate in volume. At least four geochemically distinct eruptive units are described with variations in Ba, Sr, Zr and Nb. Picture Gorge Basalt flows and Dinner Creek Tuff units found within the study area both overlay and underlie the Dooley Mountain rhyolite complex. These stratigraphic relationships are consistent with the one existing Ar-Ar age date 15.59±0.04 Ma (Hess, 2014) for the Dooley rhyolite complex, bracketing the eruptive period between ~16.0 and ~15.2 Ma (Streck et al., 2015; Barry et al., 2013).

The findings of this study indicate that the Buchanan rhyolite complex and the Dooley Mountain rhyolite complex are the westernmost and northernmost rhyolite complexes among the earliest (16-16.5 Ma) mid-Miocene rhyolites associated with initiation of Yellowstone hot spot related volcanism.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier