First Advisor

Miguel A. Figliozzi

Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Civil & Environmental Engineering


Civil and Environmental Engineering




Traffic flow, Highway capacity, Express highways



Physical Description

1 online resource (xiii, 139 p.) : ill. (some col.)


Developments in high resolution traffic sensors over the past decades are providing a wealth of empirical speed-flow data. Travel demand models use speed-flow relationships to assign traffic flows to network links. However, speed-flow relationships have not been revalidated against new detailed traffic sensor data. Therefore, it is necessary to revisit speed-flow relationships based on actual measured conditions on network links rather than assuming constant speed-flow relationships over entire highway network systems. Speed-flow relationships have been particularly difficult to calibrate and estimate when traffic volumes approach capacity, i.e. when the v/c ratio approaches one. This thesis empirically evaluates the speed-flow relationships for v/c < 1 using field data. For congested conditions (v/c > 1) a theoretical approach is taken. A new methodology to determine the distribution of the activation of bottlenecks, bottleneck duration, and bottleneck deactivation is proposed. This thesis is a new contribution to understand the stochastic nature of freeway capacity as well as bottleneck duration, activation, and deactivation. Unlike previous research efforts, this thesis studies speed-flow relationships at the lane level and later presents a method to estimate speed-flow relationships at the link level.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


Portland State University. Dept. of Civil & Environmental Engineering

Persistent Identifier