George G. Lendaris

Date of Award


Document Type


Degree Name

Master of Science (M.S.) in Electrical and Computer Engineering


Electrical and Computer Engineering

Physical Description

1 online resource (113 p.)


Pattern recognition systems, Neural computers




This thesis describes an approach for accomplishing a pattern recognition task using conceptual graph theory and neural networks (NNs). The set of patterns to be recognized are the capital letters of six different fonts of the English alphabet, plus two shifted and six rotated versions of each. The letters are represented to the neural network on a 16x16 input grid (256 "sensor lines"). A standard classification encoding for such patterns is to use a 26-bit vector (26 lines at the NN's output), one bit corresponding to each letter. Experiments with such an encoding yielded results with poor generalization capability. A new encoding scheme was developed, based on the conceptual graph formalism. This entailed designing a set of concepts and a set of associated relations appropriate to the upper case letters of the English alphabet. From these, the following were developed: a conceptual graph representation for each letter, a connection matrix for each, and finally, a C-vector and an R-vector representation for each. The latter were used as the output encoding (21 bits) of the NN pattern recognizer. A feed-forward neural network with 256 inputs, 21 outputs, and 2 hidden layers was trained using the back-propagation- of-error algorithm. Results were significantly better than with the more standard. encoding. Generalization on fonts improved from 74% to 96%, generalization on rotations improved from 83% to 94%, and finally, generalization on shifts improved from 2% to 93%.


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier