First Advisor

Malcolm S. Lea

Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Biology






Mitochondria, Oxygen in the body



Physical Description

1 online resource (87 p.)


The physiological limit to maximum aerobic capacity (VO2max) in vertebrates has been attributed to cardiovascular oxygen delivery, to the ability of the muscle cells to consume oxygen, or to a fine-tuned development of all components of the respiratory system such that no single component can be shown to limit VO2max. The above hypotheses have each been developed using different experiments with different animals. The comparative studies uniting these animals and methods are limited. In order to further our knowledge of the cellular limit to VO2max, skeletal muscle mitochondria were isolated from species representing four vertebrate classes, and endothermic and ectothermic physiology. Mitochondrial VO2 was measured at 15, 25 and 35°C and the results were compared between species and endothermic and ectothermic groups. Mitochondrial enzyme activities were measured at the three treatment temperatures to ascertain which enzyme activity best represents VO2max for all vertebrates. Cytochrome difference spectra were measured to determine the concentrations of mitochondrial cytochromes c+c1 . The results show that mitochondria are unique in all species tested. Each species has its own response to changing temperature and its own mitochondrial enzyme activity profile. In addition, in vitro measurements of mitochondrial VO2 for all species show rates significantly higher than those estimated from whole organism measurements of VO2max, suggesting that mitochondrial oxygen uptake is not a factor limiting organismal V02max. The Q10 for mitochondrial VO2 differed significantly between groups, indicating that differences in VO2max between endotherms and ectotherms cannot be explained solely on the basis of temperature. The activation energy (Ea) of mitochondrial VO2 was significantly higher in endotherms compared to ectotherms. Mitochondrial enzyme activities did not show the same Q10 and Ea differences as the intact mitochondria. Since enzyme activities were measured on mitochondria disrupted with either detergent or sonication, physical properties of the mitochondrial inner membrane are suggested as being responsible for these differences.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier