First Advisor

Malgorzata E. Chrzanowaska-Jeske

Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Electrical Engineering


Electrical Engineering




Computer algorithms, Microprocessors -- Design and construction, Computer-aided design, Cypress CY7C361 (Microprocessor)



Physical Description

1 online resource (111 p.)


In this thesis, we describe an architecture-driven fitting algorithm for an Application-Specific EPLD, the CY7C361, from Cypress Semiconductor. Traditional placement and routing tools for PLDs perform placement and routing separately. Several placement possibilities are created and the router tries to realize the connections between the physical locations of the cells on the chip. The Cypress CY7C361 has a very unique chip architecture with a highly limited connectivity between the physical cells. Therefore, it is necessary to consider the mutability when the placement of cells is performed. The combination of the two stages is called fitting. The specific architecture-dependent constraints, imposed on the connectivity of the CY7C361 chip were used to develop a hierarchical partitioning structure of the algorithm. This approach limits very effectively the solution space in the early stage of the search for a solution of the fitting problem. The partitioning approach for the fitting algorithm is not limited on the Cypress CY7C361. It can be applied to other architectures with similar connectivity restrictions, too.


In Copyright. URI: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL

Persistent Identifier