Advisor

Michael L. Cummings

Date of Award

2-16-1996

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Geology

Department

Geology

Physical Description

1 online resource (viii, 127 p.)

Subjects

Aquifers -- Oregon -- Morrow County, Aquifers -- Oregon -- Umatilla County, Basalt -- Oregon -- Morrow County, Basalt -- Oregon -- Umatilla County, Nitrates -- Environmental aspects -- Oregon

DOI

10.15760/etd.7082

Abstract

Nitrate concentration in excess of national drinking-water standards (10 mg/l) are present in the shallow alluvial aquifer and Saddle Mountains Basalt (SMB) aquifer in the Lower Umatilla Basin, Oregon. To determine sources responsible for elevated nitrate concentrations in the SMB aquifer mass-balance and reaction-path models (NETPATH and PHREEQE) were used to understand observed geochemical trends. Nitrate-nitrogen isotopes were used to distinguish potential nitrate sources in the shallow alluvial aquifer. NETPATH-validated simple water/rock reactions in the SMB aquifers in Irrigon (dissolving glass, precipitating smectite, dissolving or precipitating calcite, and cation exchange) using constituents (calcium, magnesium, sodium and carbon). Diversity of composition for the shallow alluvial water and limited number of wells available made obtaining a mass balanced solution for the SMB aquifer near Boardman impossible. Irrigon basalt groundwaters were consistent with the PHREEQE models prediction of natural hydrochemical trends, where Boardman basalt groundwaters plotted consistently with impacted alluvial groundwater. Nitrogen-isotopic values of nitrate (o 15NNo3) were measured in the shallow alluvial groundwater from 17 wells in 4 land-use settings, 3 lysimeter samples and 1 surface water effluent sample. The landuse setting and corresponding average ranges for nitrate concentrations (as N) and 015NNo3 values for wells near: commercial fertilizer-irrigated fields range from 25-87 mg/l, +3.5 to +4.6 per mil; explosive washout lagoons ranged from 10-18 mg/l, +4.6 to +4.9 per mil; potato waste water application ranged from 6.4-17.8 mg/l, +4.4 to +35 per mil; past confined animal feeding operations (CAFO) ranged from 16-56 mg/l, +4.9 to 10.4 per mil; lysimeters 5.4-39.9 mg/l, +9.1 to +21.9 per mil; surface water effluent ranged from 60-61 mg/l, +3.5 to 6.5 per mil; and varying landuse ranged from 9.3-19.5 mg/l, +2.7 to +7.1 per mil. Commercial fertilizer 0 15NNo3 signatures are consistent for this source. Explosive 015NNa3 values are consistent with an atmospheric signature. CAFO o15NNo3 signatures probably result from mixing between currently applied commercial fertilizer and past CAFO's. High 015NNo3 Signatures (+22 to +35 per mil) imply denitrification. Potato waste water and varying land-use 015NNo3 signatures indicate probable mixing of nitratenitrogen sources in the groundwater.

Description

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL

Persistent Identifier

https://archives.pdx.edu/ds/psu/30091

Included in

Geology Commons

Share

COinS