First Advisor

Bin Jiang

Term of Graduation

Spring 2020

Date of Publication

5-12-2020

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.) in Mathematical Sciences

Department

Mathematics

Language

English

DOI

10.15760/etd.7320

Physical Description

1 online resource (xi, 94 pages)

Abstract

My dissertation presents several new algorithms incorporating non-parametric and deep learning approaches for computer vision and related tasks, including object localization, object tracking and model compression. With respect to object localization, I introduce a method to perform active localization by modeling spatial and other relationships between objects in a coherent "visual situation" using a set of probability distributions. I further refine this approach with the Multipole Density Estimation with Importance Clustering (MIC-Situate) algorithm. Next, I formulate active, "situation" object search as a Bayesian optimization problem using Gaussian Processes. Using my Gaussian Process Context Situation Learning (GP-CL) algorithm, I demonstrate improved efficiency for object localization over baseline procedures. In subsequent work, I expand this research to frame object tracking in video as a temporally-evolving, dynamic Bayesian optimization problem. Here I present the Siamese-Dynamic Bayesian Tracking Algorithm (SDBTA), the first integrated dynamic Bayesian optimization framework in combination with deep learning for video tracking. Through experiments, I show improved results for video tracking in comparison with baseline approaches. Finally, I propose a novel data compression algorithm, Regularized L21 Semi-NonNegative Matrix Factorization (L21 SNF) which serves as a general purpose, parts-based compression algorithm, applicable to deep model compression.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

https://archives.pdx.edu/ds/psu/33240

Included in

Mathematics Commons

Share

COinS