First Advisor

Malgorzata Chrzanowska-Jeske

Term of Graduation


Date of Publication


Document Type


Degree Name

Master of Science (M.S.) in Electrical and Computer Engineering


Electrical and Computer Engineering




Electronic circuits -- Testing, Signal processing -- Digital techniques, Parallel processing (Electronic computers), Sequential processing (Computer science)



Physical Description

1 online resource (v, 68 pages)


Today, VLSI design has progressed to a stage where it needs to incorporate methods of testing circuits. The Automatic Test Pattern Generation (ATPG) is a very attractive method and feasible on almost any combinational and sequential circuit.

Currently available automatic test pattern generators (ATPGs) generate test sets that may be excessively long. Because a cost of testing depends on the test length. compaction techniques have been used to reduce that length. The motivation for studying test compaction is twofold. Firstly, by reducing the test sequence length. the memory requirements during the test application and the test application time are reduced.

Secondly, the extent of test compaction possible for deterministic test sequences indicates that test pattern generators spend a significant amount of time generating test vectors that are not necessary. The compacted test sequences provide a target for more efficient deterministic test generators. Two types of compaction techniques exist: dynamic and static. The dynamic test sequence compaction performs compaction concurrently with the test generation process and often requires modification of the test generator. The static test sequence compaction is done in a post-processing step to the test generation and is independent of the test generation algorithm and process.

In the thesis, a new idea for static compaction of test sequences for synchronous sequential circuits has been proposed. Our new method - SUSEM (Set Up Sequence Elimination Method) uses the circuit state information to eliminate some setup sequences for the target faults and consequently reduce the test sequence length. The technique has been used for the test sequences generated by HITEC test generator. ISCAS89 benchmark circuits were used in our experiments, for some circuits which have a large number of target faults and relatively small number of flip-flops, the very significant compactions have been obtained. The more important is that this method can be used to improve the test generation procedure unlike most static compaction methods which blindly or randomly remove parts of test vectors and cannot be used to improve the test generators.


In Copyright. URI:

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).


If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to and include clear identification of the work, preferably with URL.

Persistent Identifier